Skip to main content

Advertisement

Log in

Regenerating a kidney in a lymph node

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The ultimate treatment for end-stage renal disease (ESRD) is orthotopic transplantation. However, the demand for kidney transplantation far exceeds the number of available donor organs. While more than 100,000 Americans need a kidney, only 17,000 people receive a kidney transplant each year (National Kidney Foundation’s estimations). In recent years, several regenerative medicine/tissue engineering approaches have been exploited to alleviate the kidney shortage crisis. Although these approaches have yielded promising results in experimental animal models, the kidney is a complex organ and translation into the clinical realm has been challenging to date. In this review, we will discuss cell therapy-based approaches for kidney regeneration and whole-kidney tissue engineering strategies, including our innovative approach to regenerate a functional kidney using the lymph node as an in vivo bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maeshima A, Takahashi S, Nakasatomi M, Nojima Y (2015) Diverse cell populations involved in regeneration of renal tubular epithelium following acute kidney injury. Stem Cells Inc. doi:10.1155/2015/964849

  2. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  CAS  PubMed  Google Scholar 

  3. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion (Paris) 54:1418–1437

    Article  CAS  Google Scholar 

  4. Ito T (2003) Stem cells of the adult kidney: where are you from? Nephrol Dial Transplant 18:641–644

    Article  PubMed  Google Scholar 

  5. Gupta S, Rosenberg ME (2008) Do stem cells exist in the adult kidney? Am J Nephrol 28:607–613

    Article  PubMed  Google Scholar 

  6. Little MH, Bertram JF (2009) Is there such a thing as a renal stem cell? J Am Soc Nephrol 20:2112–2117

    Article  CAS  PubMed  Google Scholar 

  7. Lindgren D, Bostrom AK, Nilsson K, Hansson J, Sjolund J, Moller C, Jirstrom K, Nilsson E, Landberg G, Axelson H, Johansson ME (2011) Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 178:828–837

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, Ronconi E, Meini C, Gacci M, Squecco R, Carini M, Gesualdo L, Francini F, Maggi E, Annunziato F, Lasagni L, Serio M, Romagnani S, Romagnani P (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456

    Article  CAS  PubMed  Google Scholar 

  9. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hishikawa K, Marumo T, Miura S, Nakanishi A, Matsuzaki Y, Shibata K, Ichiyanagi T, Kohike H, Komori T, Takahashi I, Takase O, Imai N, Yoshikawa M, Inowa T, Hayashi M, Nakaki T, Nakauchi H, Okano H, Fujita T (2005) Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol 169:921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  12. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  13. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  14. Quimby JM, Webb TL, Habenicht LM, Dow SW (2013) Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies. Stem Cell Res Ther 4:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hauser PV, De Fazio R, Bruno S, Sdei S, Grange C, Bussolati B, Benedetto C, Camussi G (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 177:2011–2021

    Article  PubMed  PubMed Central  Google Scholar 

  16. Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, Lemley KV, Rosol M, Wu S, Atala A, Warburton D, De Filippo RE (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5, e9357

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, Warburton D, Lemley KV, De Filippo RE, Perin L (2012) Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol 23:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morigi M, Rota C, Montemurro T, Montelatici E, Lo Cicero V, Imberti B, Abbate M, Zoja C, Cassis P, Longaretti L, Rebulla P, Introna M, Capelli C, Benigni A, Remuzzi G, Lazzari L (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28:513–522

    CAS  PubMed  Google Scholar 

  19. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    Article  CAS  PubMed  Google Scholar 

  20. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568

    Article  CAS  PubMed  Google Scholar 

  21. Lee PY, Chien Y, Chiou GY, Lin CH, Chiou CH, Tarng DC (2012) Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplant 21:2569–2585

    Article  PubMed  Google Scholar 

  22. Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M, Grazia de Simoni M, Remuzzi G, Goligorsky MS, Benigni A (2015) Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Rep 4:685–698

    Article  CAS  Google Scholar 

  23. Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C, Rizzo P, Papadimou E, Novelli R, Benigni A, Remuzzi G, Morigi M (2015) Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep 5:8826

    Article  PubMed  PubMed Central  Google Scholar 

  24. Francipane MG, Lagasse E (2015) Pluripotent stem cells to rebuild a kidney: the lymph node as a possible developmental niche. Cell Transplant. doi:10.3727/096368915X688632

    PubMed  Google Scholar 

  25. Woolf AS, Palmer SJ, Snow ML, Fine LG (1990) Creation of a functioning chimeric mammalian kidney. Kidney Int 38:991–997

    Article  CAS  PubMed  Google Scholar 

  26. Hammerman MR (2004) Renal organogenesis from transplanted metanephric primordia. J Am Soc Nephrol 15:1126–1132

    Article  PubMed  Google Scholar 

  27. Imberti B, Corna D, Rizzo P, Xinaris C, Abbate M, Longaretti L, Cassis P, Benedetti V, Benigni A, Zoja C, Remuzzi G, Morigi M (2015) Renal primordia activate kidney regenerative events in a rat model of progressive renal disease. PLoS One 10, e0120235

    Article  PubMed  PubMed Central  Google Scholar 

  28. D’Agati VD (2012) Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol 23:1763–1766

    Article  PubMed  Google Scholar 

  29. Xinaris C, Benedetti V, Rizzo P, Abbate M, Corna D, Azzollini N, Conti S, Unbekandt M, Davies JA, Morigi M, Benigni A, Remuzzi G (2012) In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol 23:1857–1868

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim IH, Ko IK, Atala A, Yoo JJ (2015) Whole kidney engineering for clinical translation. Curr Opin Organ Transplant 20:165–170

    Article  CAS  PubMed  Google Scholar 

  31. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20:2338–2347

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N, Hamazaki T, Ellison GW, Batich CD (2012) Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis 8:49–55

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33:7756–7764

    Article  CAS  PubMed  Google Scholar 

  34. Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Dipl C, Sangalli F, Conti S, Benigni A, Remuzzi A, Remuzzi G (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng A 20:1486–1498

    Article  CAS  Google Scholar 

  35. Al-Awqati Q, Oliver JA (2002) Stem cells in the kidney. Kidney Int 61:387–395

    Article  PubMed  Google Scholar 

  36. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533

    Article  PubMed  Google Scholar 

  37. Ishii Y, Sawada T, Kubota K, Fuchinoue S, Teraoka S, Shimizu A (2005) Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy. Kidney Int 67:321–332

    Article  PubMed  Google Scholar 

  38. Casellas D, Navar LG (1984) In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol 246:F349–F358

    CAS  PubMed  Google Scholar 

  39. Zhai XY, Thomsen JS, Birn H, Kristoffersen IB, Andreasen A, Christensen EI (2006) Three-dimensional reconstruction of the mouse nephron. J Am Soc Nephrol 17:77–88

    Article  PubMed  Google Scholar 

  40. Bentley MD, Jorgensen SM, Lerman LO, Ritman EL, Romero JC (2007) Visualization of three-dimensional nephron structure with microcomputed tomography. Anat Rec 290:277–283

    Article  Google Scholar 

  41. Svendsen CN (2013) Back to the future: how human induced pluripotent stem cells will transform regenerative medicine. Hum Mol Genet 22:R32–R38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nostro MC, Keller G (2012) Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol 23:701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansson EM, Lendahl U (2013) Regenerative medicine for the treatment of heart disease. J Intern Med 273:235–245

    Article  CAS  PubMed  Google Scholar 

  44. Woolf AS, Hornbruch A, Fine LG (1991) Integration of new embryonic nephrons into the kidney. Am J Kidney Dis 17:611–614

    Article  CAS  PubMed  Google Scholar 

  45. Rogers SA, Lowell JA, Hammerman NA, Hammerman MR (1998) Transplantation of developing metanephroi into adult rats. Kidney Int 54:27–37

    Article  CAS  PubMed  Google Scholar 

  46. Hammerman MR (2003) Tissue engineering the kidney. Kidney Int 63:1195–1204

    Article  PubMed  Google Scholar 

  47. Dilworth MR, Clancy MJ, Marshall D, Bravery CA, Brenchley PE, Ashton N (2008) Development and functional capacity of transplanted rat metanephroi. Nephrol Dial Transplant 23:871–879

    Article  CAS  PubMed  Google Scholar 

  48. Marshall D, Dilworth MR, Clancy M, Bravery CA, Ashton N (2007) Increasing renal mass improves survival in anephric rats following metanephros transplantation. Exp Physiol 92:263–271

    Article  CAS  PubMed  Google Scholar 

  49. Kim SS, Park HJ, Han J, Gwak SJ, Park MH, Song KW, Rhee YH, Min Chung H, Kim BS (2007) Improvement of kidney failure with fetal kidney precursor cell transplantation. Transplantation 83:1249–1258

    Article  PubMed  Google Scholar 

  50. Yokote S, Yokoo T, Matsumoto K, Utsunomiya Y, Kawamura T, Hosoya T (2012) The effect of metanephros transplantation on blood pressure in anephric rats with induced acute hypotension. Nephrol Dial Transplant 27:3449–3455

    Article  CAS  PubMed  Google Scholar 

  51. Kim HI, Yu JE, Park CG, Kim SJ (2010) Comparison of four pancreatic islet implantation sites. J Korean Med Sci 25:203–210

    Article  CAS  PubMed  Google Scholar 

  52. Ellis H (1997) The clinical significance of adhesions: focus on intestinal obstruction. Eur J Surg Suppl 5–9

  53. DeWard AD, Komori J, Lagasse E (2014) Ectopic transplantation sites for cell-based therapy. Curr Opin Organ Transplant 19:169–174

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cascalho M, Platt JL (2001) Xenotransplantation and other means of organ replacement. Nat Rev Immunol 1:154–160

    Article  CAS  PubMed  Google Scholar 

  55. Lawenda BD, Mondry TE, Johnstone PA (2009) Lymphedema: a primer on the identification and management of a chronic condition in oncologic treatment. CA Cancer J Clin 59:8–24

    Article  PubMed  Google Scholar 

  56. Hoppo T, Komori J, Manohar R, Stolz DB, Lagasse E (2011) Rescue of lethal hepatic failure by hepatized lymph nodes in mice. Gastroenterology 140:656–666, e2

  57. Komori J, Boone L, DeWard A, Hoppo T, Lagasse E (2012) The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat Biotechnol 30:976–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Francipane MG, Lagasse E (2013) Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1. Oncotarget 4:1948–1962

    Article  PubMed  PubMed Central  Google Scholar 

  59. Francipane MG, Lagasse E (2014) Maturation of embryonic tissues in a lymph node: a new approach for bioengineering complex organs. Organogenesis 10:323–331

    Article  PubMed  Google Scholar 

  60. Francipane MG, Lagasse E (2015) The lymph node as a new site for kidney organogenesis. Stem Cells Transl Med 4:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee HW, Kim WY, Song HK, Yang CW, Han KH, Kwon HM, Kim J (2007) Sequential expression of NKCC2, TonEBP, aldose reductase, and urea transporter-A in developing mouse kidney. Am J Physiol Ren Physiol 292:F269–F277

    Article  CAS  Google Scholar 

  62. Timmer RT, Klein JD, Bagnasco SM, Doran JJ, Verlander JW, Gunn RB, Sands JM (2001) Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am J Physiol Cell Physiol 281:C1318–C1325

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ri.MED Foundation (M.G.F.), by the Commonwealth of Pennsylvania (E.L.), and by the US National Institutes of Health grant R01 DK085711 (E.L.). We thank Lynda Guzik for proofreading and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Giovanna Francipane.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francipane, M.G., Lagasse, E. Regenerating a kidney in a lymph node. Pediatr Nephrol 31, 1553–1560 (2016). https://doi.org/10.1007/s00467-015-3296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3296-y

Keywords

Navigation