Skip to main content

Advertisement

Log in

Effect of plasma NOx values on cardiac function in obese hypertensive and normotensive pediatric patients

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Hypertension (HT) is a major comorbidity of obesity that is associated with an increased risk of cardiovascular disease and higher mortality. The aim of our study was to evaluate cardiac function in obese hypertensive (OHT) and obese normotensive (ONT) pediatric patients and determine the effects of plasma nitric oxide (NOx) values on cardiac function, while demonstrating the role of plasma NOx in HT in obese pediatric patients.

Methods

The study population consisted of 62 patients (27 boys, 35 girls), aged 13–18 years and 21 age-matched healthy controls. All subjects enrolled in the study underwent echocardiography (Echo) evaluation and ambulatory blood pressure monitoring for HT. Plasma NOx and biochemical values were studied in both patient groups separately.

Results

Plasma NOx levels were found to be lower in the OHT group than in the ONT and control groups (p < 0.001) and to be negatively correlated with left ventricular mass index values (p < 0.05). Both the OHT and ONT groups had concentric hypertrophy of the heart.

Conclusions

Plasma NOx plays an essential role in obesity-induced HT. Concentric hypertrophy of the left ventricle was found in both the OHT and ONT groups, indicating structural deformation of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McCrindle BW (2010) Assesment and management of hypertension in children and adolescents. Nat Rev Cardiol 7:155–163

    Article  PubMed  Google Scholar 

  2. Kotchen TA (2010) Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am J Hypertens 23:1170–1178

    Article  CAS  PubMed  Google Scholar 

  3. Ludwig DS (2007) Childhood obesity—the shape of things to come. N Eng J Med 357:2325–2327

    Article  CAS  Google Scholar 

  4. Flynn JT (2011) Ambulatory blood pressure monitoring in children: imperfect yet essential. Pediatr Nephrol 26:2089–2094

    Article  PubMed  Google Scholar 

  5. Lurbe E, Torro I, Aguilar F, Alvarez J, Alcon J, Pascual JM, Redon J (2008) Added impact of obesity and insulin resistance in nocturnal blood pressure elevation in children and adolescents. Hypertension 51:635–641

    Article  CAS  PubMed  Google Scholar 

  6. Flynn JT, Urbina EM (2012) Pediatric ambulatory blood pressure monitoring: indications and interpretations. J Clin Hypertens (Greenwich) 14:372–382

    Article  Google Scholar 

  7. Sürücü H, Tatli E, Okudan S, Değirmenci A (2008) Evaluation of the effects of obesity on heart functions using standard echocardiography and pulsed wave tissue Doppler imaging. South Med J 101:152–157

    Article  PubMed  Google Scholar 

  8. Dhuper S, Abdullah RA, Weichbrod L, Mahdi E, Cohen HW (2011) Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity (Silver Spring) 19:128–133

    Article  Google Scholar 

  9. Bełtowski J (2006) Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 24:789–801

    Article  PubMed  Google Scholar 

  10. Kotsis V, Stabouli S, Papakatsika S, Rizos Z, Parati G (2010) Mechanisms of obesity-induced hypertension. Hypertens Res 33:386–393

    Article  PubMed  Google Scholar 

  11. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G, Stec DE (2010) Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 285:17271–17276

    Article  PubMed Central  CAS  Google Scholar 

  12. Williams IL, Wheatcroft SB, Shah AM, Kearney MT (2002) Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord 26:754–764

    Article  CAS  PubMed  Google Scholar 

  13. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Chayama K, Oshima T (2001) Effect of obesity on endothelium-dependent, nitric oxide-mediated vasodilation innormotensive individuals and patients with essential hypertension. Am J Hypertens 14:1038–1045

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bundak R, Furman A, Gunoz H, Darendeliler F, Bas F, Neyzi O (2006) Body mass index references for Turkish children. Acta Paediatr 95:194–198

    Article  PubMed  Google Scholar 

  16. Hatipoglu N, Ozturk A, Mazicioglu MM, Kurtoglu S, Seyhan S, Lokoglu F (2008) Waist circumference percentiles for 7- to 17-year-old Turkish children and adolescents. Eur J Pediatr 167:383–389

    Article  PubMed  Google Scholar 

  17. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kurtoğlu S, Hatipoğlu N, Mazıcıoğlu M, Kendirici M, Keskin M, Kondolot M (2010) Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol 2:100–106

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S (2007) The metabolic syndrome in children and adolescents - an IDF consensus report. Pediatr Diabetes 8:299–306

    Article  PubMed  Google Scholar 

  20. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576

    Article  Google Scholar 

  21. Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M, Mahoney L, McCrindle B, Mietus-Snyder M, Steinberger J, Daniels S, American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee (2008) Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the council on cardiovascular disease in the young and the council for high blood pressure research. Hypertension 52:433–451

    Article  CAS  PubMed  Google Scholar 

  22. Soergel M, Kirschstein M, Busch C, Danne T, Gellermann J, Holl R, Krull F, Reichert H, Reusz GS, Rascher W (1997) Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr 130:178–184

    Article  CAS  PubMed  Google Scholar 

  23. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  24. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, Pignatelli RH, Rychik J, Task Force of the Pediatric Council of the American Society of Echocardiography; Pediatric Council of the American Society of Echocardiography (2006) Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr 19:1413–1430

    Article  PubMed  Google Scholar 

  25. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  26. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251–1260

    Article  PubMed  Google Scholar 

  27. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714

    Article  PubMed  Google Scholar 

  28. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22:107–133

    Article  PubMed  Google Scholar 

  29. Mirchandani D, Bhatia J, Leisman D, Kwon EN, Cooper R, Chorny N, Frank R, Infante L, Sethna C (2014) Concordance of measures of left-ventricular hypertrophy in pediatric hypertension. Pediatr Cardiol 35:622–626

    Article  CAS  PubMed  Google Scholar 

  30. Flynn JT, Falkner BE (2011) Obesity hypertension in adolescents: epidemiology, evaluation, and management. J Clin Hypertens 13:323–331

    Article  Google Scholar 

  31. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362:485–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hermann M, Flammer A, Lüscher TF (2006) Nitric oxide in hypertension. J Clin Hypertens (Greenwich) 8:17–29

    Article  CAS  Google Scholar 

  33. Gruber HJ, Mayer C, Mangge H, Fauler G, Grandits N, Wilders-Truschnig M (2008) Obesity reduces the bioavailability of nitric oxide in juveniles. Int J Obes 32:826–831

    Article  CAS  Google Scholar 

  34. Rajapakse NW, Karim F, Straznicky NE, Fernandez S, Evans RG, Head GA, Kaye DM (2014) Augmented endothelial-specific L-arginine transport prevents obesity-induced hypertension. Acta Physiol 212:39–48

  35. Meng W, Zhang C, Zhang Q, Song X, Lin H, Zhang D (2012) Association between leukocyte and metabolic syndrome in urban Han Chinese: a longitudinal cohort study. PLoS 7:e49875

    Article  CAS  Google Scholar 

  36. Demir M (2013) The relationship between neutrophil lymphocyte ratio and non-dipper hypertension. Clin Exp Hypertens 35:570–573

    Article  CAS  PubMed  Google Scholar 

  37. Feig DI, Madero M, Jalal DI, Sanchez-Lozada LG, Johnson RJ (2013) Uric acid and the origins of hypertension. J Pediatr 162:896–902

    Article  CAS  PubMed  Google Scholar 

  38. Viazzi F, Antolini L, Giussani M, Brambilla P, Galbiati S, Mastriani S (2013) Serum uric acid and blood pressure in children at cardiovascular risk. Pediatrics 132:e93–99

    Article  PubMed  Google Scholar 

  39. Babinska K, Kovacs L, Janko V, Dallos T, Feber J (2012) Association between obesity and the severity of ambulatory hypertension in children and adolescents. J Am Soc Hypertens 6:356–363

    Article  CAS  PubMed  Google Scholar 

  40. Kim YK, Kim HU, Song JY (2009) Ambulatory blood pressure monitoring and blood pressure load in obese children. Korean Circ J 39:482–487

    Article  PubMed Central  PubMed  Google Scholar 

  41. Aguilar A, Ostrow V, De Luca F, Suarez E (2010) Elevated ambulatory blood pressure in a multi-ethnic population of obese children and adolescents. J Pediatr 156:930–935

    Article  PubMed  Google Scholar 

  42. Turak O, Ozcan F, Tok D, Işleyen A, Sökmen E, Taşoğlu I, Aydoğdu S, Sen N, McFann K, Johnson RJ, Kanbay M (2013) Serum uric acid, inflammation, and nondipping circadian pattern in essential hypertension. J Clin Hypertens (Greenwich) 15:7–13

    Article  CAS  Google Scholar 

  43. Kotsis V, Stabouli S, Bouldin M, Low A, Toumanidis S, Zakopoulos N (2005) Impact of obesity on 24-hour ambulatory blood pressure and hypertension. Hypertension 45:602–607

    Article  CAS  PubMed  Google Scholar 

  44. Civilibal M, Duru NS, Elevli M (2014) Subclinical atherosclerosis and ambulatory blood pressure in children with metabolic syndrome. Pediatr Nephrol 29:2197–2204

    Article  PubMed  Google Scholar 

  45. Thompson M, Dana T, Bougatsos C, Blazina I, Norris SL (2013) Screening for hypertension in children and adolescents to prevent cardiovascular disease. Pediatrics 131:490–525

    Article  PubMed  Google Scholar 

  46. Hanevold C, Waller J, Daniels S, Portman R, Sorof J, International Pediatric Hypertension Association (2004) The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics 113:328–333

    Article  PubMed  Google Scholar 

  47. Battal F, Ermis B, Aktop Z, Can M, Demirel F (2011) Early cardiac abnormalities and serum N-terminal pro B-type natriuretic peptide levels in obese children. J Pediatr Endocrinol Metab 24:723–726

    Article  CAS  PubMed  Google Scholar 

  48. Dahiya R, Shultz SP, Dahiya A, Fu J, Flatley C, Duncan D, Cardinal J, Kostner KM, Byrne NM, Hills AP, Harris M, Conwell LS, Leong GM (2015) Relation of reduced preclinical left ventricular diastolic function and cardiac remodeling in overweight youth to insulin resistance and inflammation. Am J Cardiol 115:1222–1228

    Article  CAS  PubMed  Google Scholar 

  49. Correia-Costa L, Afonso AC, Schaefer F, Guimarães JT, Bustorff M, Guerra A, Barros H, Azevedo A (2015) Decreased renal function in overweight and obese prepubertal children. Pediatr Res. doi:10.1038/pr.2015.130

    PubMed  Google Scholar 

  50. Di Bonito P, Sanguigno E, Forziato C, Di Fraia T, Moio N, Cavuto L, Sibilio G, Iardino MR, Di Carluccio C, Capaldo B (2014) Glomerular filtration rate and cardiometabolic risk in an outpatient pediatric population with high prevalence of obesity. Obesity (Silver Spring) 22:585–589

    Article  Google Scholar 

  51. Bostanci BK, Civilibal M, Elevli M, Duru NS (2012) Ambulatory blood pressure monitoring and cardiac hypertrophy in children with metabolic syndrome. Pediatr Nephrol 27:1929–1935

    Article  PubMed  Google Scholar 

  52. Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame JE, Das SR, Berry JD, Khera A, McGuire DK, Vega GL, Grundy SM, de Lemos JA, Drazner MH (2013) Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging 6:800–807

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Akcaboy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study adhered to the principles of the Declaration of Helsinki and was approved by the local Ethics Committee (Date: 27 April 2011; Protocol Number: 105). Written informed consent was obtained from all patients enrolled in the study and also from all control subjects and their parents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akcaboy, M., Kula, S., Göktas, T. et al. Effect of plasma NOx values on cardiac function in obese hypertensive and normotensive pediatric patients. Pediatr Nephrol 31, 473–483 (2016). https://doi.org/10.1007/s00467-015-3223-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3223-2

Keywords

Navigation