Skip to main content

Advertisement

Log in

Toxic environmental exposures and kidney health in children

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

High-level exposures to a number of agents are known to have direct nephrotoxic effects in children. A growing body of literature supports the hypothesis that chronic, relatively low-level exposure to various nephrotoxicants may also increase the risk for chronic kidney disease (CKD) or accelerate its progression. In this review we highlight several environmental nephrotoxicants and their association with CKD in children and adolescents. We also discuss unique epidemiological challenges in the use of kidney biomarkers in environmental nephrotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency (EPA) (1998) Chemical hazard environmental study: What do we really know about the safety of high production volume chemicals? Office of Pollution Prevention and Toxics, Washington DC. Available at: http://www.epa.gov/hpv/pubs/general/hazchem.pdf

  2. Woodruff TJ, Zota AR, Schwartz JM (2011) Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect 119:878–885

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schreuder MF (2012) Safety in glomerular numbers. Pediatr Nephrol 27:1881–1887

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schwartz GJ, Furth SL (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 22:1839–1848

    Article  PubMed  Google Scholar 

  5. Solhaug MJ, Bolger PM, Jose PA (2004) The developing kidney and environmental toxins. Pediatrics 113:1084–1091

    PubMed  Google Scholar 

  6. Etzel RA, Landrigan PJ (2013) Children’s exquisite vulnerability to environmental exposures. In: Landrigan PJ, Etzel RA (eds) Children's environmental health. Oxford University Press, New York, pp 18–27

  7. Wigle DT, Arbuckle TE, Walker M, Wade MG, Liu S, Krewski D (2007) Environmental hazards: evidence for effects on child health. J Toxicol Environ Health B Crit Rev 10:3–39

    Article  CAS  PubMed  Google Scholar 

  8. Landrigan PJ (2004) Children as a vulnerable population. Int J Occup Med Environ Health 17:175–177

    PubMed  Google Scholar 

  9. Ginsberg G, Hattis D, Sonawane B, Russ A, Banati P, Kozlak M, Smolenski S, Goble R (2002) Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci 66:185–200

    Article  CAS  PubMed  Google Scholar 

  10. Sabolic I (2006) Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol 104:p107–p114

    Article  CAS  PubMed  Google Scholar 

  11. Agency for Toxic Substance & Disease Registry (ATSDR) AfTSaDR (2007) Toxicological profile for arsenic. U.S. Department of Health and Human Services and Public Health Service, Atlanta. Available at: http://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=22&tid=3 (Accessioned 6/10/2015)

  12. Prasad GV, Rossi NF (1995) Arsenic intoxication associated with tubulointerstitial nephritis. Am J Kidney Dis 26:373–376

    Article  CAS  PubMed  Google Scholar 

  13. Agency EP (2001) National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring; final rule. Fed Regist 66:6976–7066

    Google Scholar 

  14. Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A (2014) Arsenic and chronic kidney disease: a systematic review. Curr Environ Health Rep 1:192–207

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng LY, Umans JG, Yeh F, Francesconi KA, Goessler W, Silbergeld EK, Bandeen-Roche K, Guallar E, Howard BV, Weaver VM, Navas-Acien A (2015) The association of urine arsenic with prevalent and incident chronic kidney disease: evidence from the Strong Heart Study. Epidemiology 6(4):601–612. doi:10.1097/EDE.0000000000000313

  16. Chen JW, Chen HY, Li WF, Liou SH, Chen CJ, Wu JH, Wang SL (2011) The association between total urinary arsenic concentration and renal dysfunction in a community-based population from central Taiwan. Chemosphere 84:17–24

    Article  CAS  PubMed  Google Scholar 

  17. Hsueh YM, Chung CJ, Shiue HS, Chen JB, Chiang SS, Yang MH, Tai CW, Su CT (2009) Urinary arsenic species and CKD in a Taiwanese population: a case–control study. Am J Kidney Dis 54:859–870

    Article  PubMed  Google Scholar 

  18. Huang CY, Chu JS, Pu YS, Yang HY, Wu CC, Chung CJ, Hsueh YM (2011) Effect of urinary total arsenic level and estimated glomerular filtration rate on the risk of renal cell carcinoma in a low arsenic exposure area. J Urol 185:2040–2044

    Article  CAS  PubMed  Google Scholar 

  19. Smith AH, Marshall G, Liaw J, Yuan Y, Ferreccio C, Steinmaus C (2012) Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ Health Perspect 120:1527–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Burbure C, Buchet JP, Leroyer A, Nisse C, Haguenoer JM, Mutti A, Smerhovsky Z, Cikrt M, Trzcinka-Ochocka M, Razniewska G, Jakubowski M, Bernard A (2006) Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels. Environ Health Perspect 114:584–590

    Article  PubMed  Google Scholar 

  21. Hawkesworth S, Wagatsuma Y, Kippler M, Fulford AJ, Arifeen SE, Persson LA, Moore SE, Vahter M (2013) Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol 42:176–185

    Article  PubMed  Google Scholar 

  22. Skroder H, Hawkesworth S, Kippler M, El Arifeen S, Wagatsuma Y, Moore SE, Vahter M (2015) Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic—potential alleviation by selenium. Environ Res 140:205–213

    Article  PubMed  Google Scholar 

  23. Weidemann D, Kuo CC, Navas-Acien A, Abraham AG, Weaver V, Fadrowski J (2015) Association of arsenic with kidney function in adolescents and young adults: results from the national health and nutrition examination survey 2009–2012. Environ Res 140:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  25. Richter PA, Bishop EE, Wang J, Swahn MH (2009) Tobacco smoke exposure and levels of urinary metals in the U.S. youth and adult population: the national health and nutrition examination survey (NHANES) 1999–2004. Int J Environ Res Public Health 6:1930–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roels HA, Van Assche FJ, Oversteyns M, De Groof M, Lauwerys RR, Lison D (1997) Reversibility of microproteinuria in cadmium workers with incipient tubular dysfunction after reduction of exposure. Am J Ind Med 31:645–652

    Article  CAS  PubMed  Google Scholar 

  27. Li Q, Nishijo M, Nakagawa H, Morikawa Y, Sakurai M, Nakamura K, Kido T, Nogawa K, Dai M (2011) Relationship between urinary cadmium and mortality in habitants of a cadmium-polluted area: a 22-year follow-up study in Japan. Chin Med J (Engl) 124:3504–3509

    CAS  Google Scholar 

  28. Akesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C, Samsioe G, Stromberg U, Skerfving S (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect 113:1627–1631

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hellstrom L, Elinder CG, Dahlberg B, Lundberg M, Jarup L, Persson B, Axelson O (2001) Cadmium exposure and end-stage renal disease. Am J Kidney Dis 38:1001–1008

    Article  CAS  PubMed  Google Scholar 

  30. Navas-Acien A, Tellez-Plaza M, Guallar E, Muntner P, Silbergeld E, Jaar B, Weaver V (2009) Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol 170:1156–1164

    Article  PubMed  PubMed Central  Google Scholar 

  31. Staessen JA, Nawrot T, Hond ED, Thijs L, Fagard R, Hoppenbrouwers K, Koppen G, Nelen V, Schoeters G, Vanderschueren D, Van Hecke E, Verschaeve L, Vlietinck R, Roels HA (2001) Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. Lancet 357:1660–1669

    Article  CAS  PubMed  Google Scholar 

  32. Noonan CW, Sarasua SM, Campagna D, Kathman SJ, Lybarger JA, Mueller PW (2002) Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ Health Perspect 110:151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Registry AfTSaD (2007) Public Health Statement for Lead. CAS# 7439-92-1. US Department of Health and Human Services/Public Health Service, Atlanta. Available at: http://www.atsdr.cdc.gov/PHS/PHS.asp?id=92&tid=22. Accessed 6 Oct 2015

  34. Cramer K, Goyer RA, Jagenburg R, Wilson MH (1974) Renal ultrastructure, renal function, and parameters of lead toxicity in workers with different periods of lead exposure. Br J Ind Med 31:113–127

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goyer RA (1989) Mechanisms of lead and cadmium nephrotoxicity. Toxicol Lett 46:153–162

    Article  CAS  PubMed  Google Scholar 

  36. Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect 106:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosen JF, Chesney RW, Hamstra A, DeLuca HF, Mahaffey KR (1980) Reduction in 1,25-dihydroxyvitamin D in children with increased lead absorption. N Engl J Med 302:1128–1131

    Article  CAS  PubMed  Google Scholar 

  38. Chisolm JJHH, Eberlein WR, Harrison HE (1955) Aminoaciduria, hypophosphatemia, and rickets in lead poisoning. Am J Dis Child 89:159–168

    CAS  Google Scholar 

  39. Khalil-Manesh F, Gonick HC, Cohen A, Bergamaschi E, Mutti A (1992) Experimental model of lead nephropathy. II. Effect of removal from lead exposure and chelation treatment with dimercaptosuccinic acid (DMSA). Environ Res 58:35–54

    Article  CAS  PubMed  Google Scholar 

  40. Ekong EB, Jaar BG, Weaver VM (2006) Lead-related nephrotoxicity: a review of the epidemiologic evidence. Kidney Int 70:2074–2084

    Article  CAS  PubMed  Google Scholar 

  41. Loghman-Adham M (1997) Renal effects of environmental and occupational lead exposure. Environ Health Perspect 105:928–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morgan JM, Hartley MW, Miller RE (1966) Nephropathy in chronic lead poisoning. Arch Intern Med 118:17–29

    Article  CAS  PubMed  Google Scholar 

  43. Aviv A, John E, Bernstein J, Goldsmith DI, Spitzer A (1980) Lead intoxication during development: its late effects on kidney function and blood pressure. Kidney Int 17:430–437

    Article  CAS  PubMed  Google Scholar 

  44. Nowack R, Wiecek A, Ritz E (1992) Lead and hypertension. Contrib Nephrol 100:25–34

    Article  CAS  PubMed  Google Scholar 

  45. Nye LJ (1929) An investigation of the extraordinary incidence of chronic nephritis in young people in Queensland. Med J Aust 2:145–159

    Google Scholar 

  46. Henderson DA (1954) A follow-up of cases of plumbism in children. Australas Ann Med 3:219–224

    CAS  PubMed  Google Scholar 

  47. Inglis JA, Henderson DA, Emmerson BT (1978) The pathology and pathogenesis of chronic lead nephropathy occurring in Queensland. J Pathol 124:65–76

    Article  CAS  PubMed  Google Scholar 

  48. Emmerson BT (1973) Chronic lead nephropathy. Kidney Int 4:1–5

    Article  CAS  PubMed  Google Scholar 

  49. Kimmelstiel P, Wilson C (1936) Benign and malignant hypertension and nephrosclerosis: a clinical and pathological study. Am J Pathol 12(45–82):43

    Google Scholar 

  50. Hu H (1991) A 50-year follow-up of childhood plumbism. Hypertension, renal function, and hemoglobin levels among survivors. Am J Dis Child 145:681–687

    Article  CAS  PubMed  Google Scholar 

  51. Moel DI, Sachs HK, Cohn RA, Drayton MA (1985) Renal function 9 to 17 years after childhood lead poisoning. J Pediatr 106:729–733

    Article  CAS  PubMed  Google Scholar 

  52. Loghman-Adham M (1998) Aminoaciduria and glycosuria following severe childhood lead poisoning. Pediatr Nephrol 12:218–221

    Article  CAS  PubMed  Google Scholar 

  53. Moel DI, Sachs HK (1992) Renal function 17 to 23 years after chelation therapy for childhood plumbism. Kidney Int 42:1226–1231

    Article  CAS  PubMed  Google Scholar 

  54. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW (2012) Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 8:293–300

    Article  CAS  PubMed  Google Scholar 

  55. Khalil-Manesh F, Gonick HC, Cohen AH, Alinovi R, Bergamaschi E, Mutti A, Rosen VJ (1992) Experimental model of lead nephropathy. I. Continuous high-dose lead administration. Kidney Int 41:1192–1203

    Article  CAS  PubMed  Google Scholar 

  56. Weaver VM, Lee BK, Ahn KD, Lee GS, Todd AC, Stewart WF, Wen J, Simon DJ, Parsons PJ, Schwartz BS (2003) Associations of lead biomarkers with renal function in Korean lead workers. Occup Environ Med 60:551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bernard AM, Vyskocil A, Roels H, Kriz J, Kodl M, Lauwerys R (1995) Renal effects in children living in the vicinity of a lead smelter. Environ Res 68:91–95

    Article  CAS  PubMed  Google Scholar 

  58. Fels LM, Wunsch M, Baranowski J, Norska-Borowka I, Price RG, Taylor SA, Patel S, De Broe M, Elsevier MM, Lauwerys R, Roels H, Bernard A, Mutti A, Gelpi E, Rosello J, Stolte H (1998) Adverse effects of chronic low level lead exposure on kidney function—-a risk group study in children. Nephrol Dial Transplant 13:2248–2256

  59. Verberk MM, Willems TE, Verplanke AJ, De Wolff FA (1996) Environmental lead and renal effects in children. Arch Environ Health 51:83–87

    Article  CAS  PubMed  Google Scholar 

  60. Factor-Litvak P, Wasserman G, Kline JK, Graziano J (1999) The Yugoslavia prospective study of environmental lead exposure. Environ Health Perspect 107:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chisolm JJ Jr (2001) The road to primary prevention of lead toxicity in children. Pediatrics 107:581–583

    Article  PubMed  Google Scholar 

  62. Muntner P, He J, Vupputuri S, Coresh J, Batuman V (2003) Blood lead and chronic kidney disease in the general United States population: results from NHANES III. Kidney Int 63:1044–1050

    Article  PubMed  Google Scholar 

  63. Payton M, Hu H, Sparrow D, Young JB, Landsberg L, Weiss ST (1993) Relation between blood lead and urinary biogenic amines in community-exposed men. Am J Epidemiol 138:815–825

    CAS  PubMed  Google Scholar 

  64. Staessen JA, Lauwerys RR, Buchet JP, Bulpitt CJ, Rondia D, Vanrenterghem Y, Amery A (1992) Impairment of renal function with increasing blood lead concentrations in the general population. The Cadmibel Study Group. N Engl J Med 327:151–156

    Article  CAS  PubMed  Google Scholar 

  65. Menke A, Muntner P, Batuman V, Silbergeld EK, Guallar E (2006) Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation 114:1388–1394

    Article  CAS  PubMed  Google Scholar 

  66. Fadrowski JJ, Navas-Acien A, Tellez-Plaza M, Guallar E, Weaver VM, Furth SL (2010) Blood lead level and kidney function in US adolescents: the Third National Health and Nutrition Examination Survey. Arch Intern Med 170:75–82

    Article  CAS  PubMed  Google Scholar 

  67. Fadrowski JJ, Abraham AG, Navas-Acien A, Guallar E, Weaver VM, Furth SL (2013) Blood lead level and measured glomerular filtration rate in children with chronic kidney disease. Environ Health Perspect 121:965–970

    PubMed  PubMed Central  Google Scholar 

  68. Filler G, Roach E, Yasin A, Sharma AP, Blake PG, Yang L (2012) High prevalence of elevated lead levels in pediatric dialysis patients. Pediatr Nephrol 27:1551–1556

    Article  PubMed  Google Scholar 

  69. Yu CC, Lin JL, Lin-Tan DT (2004) Environmental exposure to lead and progression of chronic renal diseases: a four-year prospective longitudinal study. J Am Soc Nephrol 15:1016–1022

    Article  CAS  PubMed  Google Scholar 

  70. Scharer K, Veits G, Brockhaus A, Ewers U (1991) High lead content of deciduous teeth in chronic renal failure. Pediatr Nephrol 5:704–707

    Article  CAS  PubMed  Google Scholar 

  71. Lin-Tan DT, Lin JL, Yen TH, Chen KH, Huang YL (2007) Long-term outcome of repeated lead chelation therapy in progressive non-diabetic chronic kidney diseases. Nephrol Dial Transplant 22:2924–2931

    Article  CAS  PubMed  Google Scholar 

  72. Lin JL, Lin-Tan DT, Yu CC, Li YJ, Huang YY, Li KL (2006) Environmental exposure to lead and progressive diabetic nephropathy in patients with type II diabetes. Kidney Int 69:2049–2056

    Article  CAS  PubMed  Google Scholar 

  73. Weaver VM, Fadrowski JJ, Jaar BG (2012) Does calcium disodium EDTA slow CKD progression? Am J Kidney Dis 60:503–506

    Article  PubMed  Google Scholar 

  74. Landrigan PJ, Etzel RA (2014) Textbook of children's environmental health. Oxford University Press, Oxford

    Google Scholar 

  75. Hua J, Pelletier L, Berlin M, Druet P (1993) Autoimmune glomerulonephritis induced by mercury vapour exposure in the Brown Norway rat. Toxicology 79:119–129

    Article  CAS  PubMed  Google Scholar 

  76. Li SJ, Zhang SH, Chen HP, Zeng CH, Zheng CX, Li LS, Liu ZH (2010) Mercury-induced membranous nephropathy: clinical and pathological features. Clin J Am Soc Nephrol 5:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barregard L, Trachtenberg F, McKinlay S (2008) Renal effects of dental amalgam in children: the New England Children's Amalgam Trial. Environ Health Perspect 116:394–399

    Article  CAS  PubMed  Google Scholar 

  78. Woods JS, Martin MD, Leroux BG, DeRouen TA, Bernardo MF, Luis HS, Leitao JG, Kushleika JV, Rue TC, Korpak AM (2008) Biomarkers of kidney integrity in children and adolescents with dental amalgam mercury exposure: findings from the Casa Pia Children's Amalgam Trial. Environ Res 108:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Geier DA, Carmody T, Kern JK, King PG, Geier MR (2013) A significant dose-dependent relationship between mercury exposure from dental amalgams and kidney integrity biomarkers: a further assessment of the Casa Pia Children's Dental Amalgam Trial. Hum Exp Toxicol 32:434–440

    Article  CAS  PubMed  Google Scholar 

  80. DeRouen TA, Woods JS, Leroux BG, Martin MD (2015) Critique of reanalysis of Casa Pia data on associations of porphyrins and glutathione-S-transferases with dental amalgam exposure. Hum Exp Toxicol 34:330–332

    Article  CAS  PubMed  Google Scholar 

  81. Arzuaga X, Rieth SH, Bathija A, Cooper GS (2010) Renal effects of exposure to natural and depleted uranium: a review of the epidemiologic and experimental data. J Toxicol Environ Health B Crit Rev 13:527–545

    Article  CAS  PubMed  Google Scholar 

  82. Homma-Takeda S, Kitahara K, Suzuki K, Blyth BJ, Suya N, Konishi T, Terada Y, Shimada Y (2015) Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity. J Appl Toxicol. doi:10.1002/jat.3126

    PubMed  Google Scholar 

  83. Shelley R, Kim NS, Parsons PJ, Lee BK, Agnew J, Jaar BG, Steuerwald AJ, Matanoski G, Fadrowski J, Schwartz BS, Todd AC, Simon D, Weaver VM (2014) Uranium associations with kidney outcomes vary by urine concentration adjustment method. J Expo Sci Environ Epidemiol 24:58–64

    Article  CAS  PubMed  Google Scholar 

  84. McDiarmid MA, Engelhardt SM, Dorsey CD, Oliver M, Gucer P, Wilson PD, Kane R, Cernich A, Kaup B, Anderson L, Hoover D, Brown L, Albertini R, Gudi R, Squibb KS (2009) Surveillance results of depleted uranium-exposed Gulf War I veterans: sixteen years of follow-up. J Toxicol Environ Health A 72:14–29

    Article  CAS  PubMed  Google Scholar 

  85. Magdo HS, Forman J, Graber N, Newman B, Klein K, Satlin L, Amler RW, Winston JA, Landrigan PJ (2007) Grand rounds: nephrotoxicity in a young child exposed to uranium from contaminated well water. Environ Health Perspect 115:1237–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Arlt VM, Stiborova M, Schmeiser HH (2002) Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis 17:265–277

    Article  CAS  PubMed  Google Scholar 

  87. Hong YT, Fu LS, Chung LH, Hung SC, Huang YT, Chi CS (2006) Fanconi's syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs. Pediatr Nephrol 21:577–579

    Article  PubMed  Google Scholar 

  88. De Broe ME (2012) Chinese herbs nephropathy and Balkan endemic nephropathy: toward a single entity, aristolochic acid nephropathy. Kidney Int 81:513–515

    Article  PubMed  Google Scholar 

  89. U.S. Food and Drug Administration (FDA) (2011) Aristolochic acid: FDA warns consumers to discontinue use of botanical products that contain aristolochic acid. Consumer Advisory, FDA, Washington DC. Available at: http://www.fda.gov/Food/RecallsOutbreaksEmergencies/SafetyAlertsAdvisories/ucm096388.htm: Accessed 10 June 2015

  90. Gokmen MR, Cosyns JP, Arlt VM, Stiborova M, Phillips DH, Schmeiser HH, Simmonds MS, Cook HT, Vanherweghem JL, Nortier JL, Lord GM (2013) The epidemiology, diagnosis, and management of aristolochic acid nephropathy: a narrative review. Ann Intern Med 158:469–477

    Article  PubMed  Google Scholar 

  91. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Berndt WO (1998) The role of transport in chemical nephrotoxicity. Toxicol Pathol 26:52–57

    Article  CAS  PubMed  Google Scholar 

  93. Dalal RP, Goldfarb DS (2011) Melamine-related kidney stones and renal toxicity. Nat Rev Nephrol 7:267–274

    Article  CAS  PubMed  Google Scholar 

  94. Gossner CM, Schlundt J, Ben Embarek P, Hird S, Lo-Fo-Wong D, Beltran JJ, Teoh KN, Tritscher A (2009) The melamine incident: implications for international food and feed safety. Environ Health Perspect 117:1803–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hau AK, Kwan TH, Li PK (2009) Melamine toxicity and the kidney. J Am Soc Nephrol 20:245–250

    Article  CAS  PubMed  Google Scholar 

  96. Correa-Rotter R, Wesseling C, Johnson RJ (2014) CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am J Kidney Dis 63:506–520

    Article  PubMed  Google Scholar 

  97. Wijkstrom J, Leiva R, Elinder CG, Leiva S, Trujillo Z, Trujillo L, Soderberg M, Hultenby K, Wernerson A (2013) Clinical and pathological characterization of Mesoamerican nephropathy: a new kidney disease in Central America. Am J Kidney Dis 62:908–918

    Article  PubMed  Google Scholar 

  98. Weiner DE, McClean MD, Kaufman JS, Brooks DR (2013) The Central American epidemic of CKD. Clin J Am Soc Nephrol 8:504–511

    Article  PubMed  Google Scholar 

  99. Jayasekara JM, Dissanayake DM, Adhikari SB, Bandara P (2013) Geographical distribution of chronic kidney disease of unknown origin in North Central Region of Sri Lanka. Ceylon Med J 58:6–10

    Article  CAS  PubMed  Google Scholar 

  100. Ramírez-Rubio OBDAJ, Kaufman J, Weiner D, Parkh C, Khan U, McClean M, Laws R (2012) Biomarkers of early kidney damage in Nicaraguan adolescents September–November 2011. Independent report of the Office of Compliance Advisor/Ombudsman. Available at: http://www.cao-ombudsman.org/cases/document-links/documents/AdolescentReportJune252012.pdf. Accessed 10 June 2015

  101. Weaver VM, Vargas GG, Silbergeld EK, Rothenberg SJ, Fadrowski JJ, Rubio-Andrade M, Parsons PJ, Steuerwald AJ, Navas-Acien A, Guallar E (2014) Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ Res 132:226–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shelley R, Kim NS, Parsons P, Lee BK, Jaar B, Fadrowski J, Agnew J, Matanoski GM, Schwartz BS, Steuerwald A, Todd A, Simon D, Weaver VM (2012) Associations of multiple metals with kidney outcomes in lead workers. Occup Environ Med 69:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weaver VM, Kotchmar DJ, Fadrowski JJ, Silbergeld EK (2015) Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? J Expos Sci Environ Epidemiol. doi:10.1038/jes.2015.8

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darcy K. Weidemann.

Additional information

Answers

1: a

2: e

3: c

4: c

5: c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidemann, D.K., Weaver, V.M. & Fadrowski, J.J. Toxic environmental exposures and kidney health in children. Pediatr Nephrol 31, 2043–2054 (2016). https://doi.org/10.1007/s00467-015-3222-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3222-3

Keywords

Navigation