Skip to main content

Advertisement

Log in

A step forward towards accurately assessing glomerular filtration rate in newborns

  • Editorial Commentary
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In this edition of Pediatric Nephrology, Milena Treiber and colleagues have published a study on cystatin C (CysC) concentrations in relation to renal volumetry in 50 small-for-gestational age (SGA) and 50 appropriate-for-gestational age (AGA) neonates, deriving a new formula for estimating neonatal glomerular filtration rate (GFR). The study builds on previous work which established that renal volumetry together with CysC blood levels is a superior method for establishing GFR in term and pre-term newborns [The Journal of Pediatrics (2014) 164:1026–1031.e2]. Treiber et al. use the expected difference between SGA and AGA renal volumes to document the superiority of their new formula, which is based on total renal volume, CysC and body surface area, but does not incorporate gold-standard inulin clearance. Treiber et al.’s study adds new knowledge to the field that will hopefully improve the safety of renally excreted critical dose drugs in the newborn period. This editorial discusses the strengths and limitations of the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filler G, Browne R, Seikaly MG (2003) Glomerular filtration rate as a putative ‘surrogate end-point’ for renal transplant clinical trials in children. Pediatr Transplant 7:18–24

    Article  PubMed  Google Scholar 

  2. Motohashi H, Inui K (2013) Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J 15:581–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Burckhardt G (2012) Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther 136:106–130

    Article  CAS  PubMed  Google Scholar 

  4. Filler G, Grimmer J, Huang SHS, Bariciak E (2012) Cystatin C for the assessment of GFR in neonates with congenital renal anomalies. Nephrol Dial Transplant 27:3382–3384

    Article  CAS  PubMed  Google Scholar 

  5. Choi YJ, Baranowska-Daca E, Nguyen V, Koji T, Ballantyne CM, Sheikh-Hamad D, Suki WN, Truong LD (2000) Mechanism of chronic obstructive uropathy: increased expression of apoptosis-promoting molecules. Kidney Int 58:1481–1491

    Article  CAS  PubMed  Google Scholar 

  6. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  CAS  PubMed  Google Scholar 

  7. Lumbers ER (1995) Functions of the renin–angiotensin system during development. Clin Exp Pharmacol Physiol 22:499–505

    Article  CAS  PubMed  Google Scholar 

  8. Strauss J, Daniel SS, James LS (1981) Postnatal adjustment in renal function. Pediatrics 68:802–808

    CAS  PubMed  Google Scholar 

  9. Chevalier RL (1982) Functional adaptation to reduced renal mass in early development. Am J Physiol 242:F190–F196

    CAS  PubMed  Google Scholar 

  10. Filler GM (2011) The challenges of assessing acute kidney injury in infants. Kidney Int 80:567–568

    Article  PubMed  Google Scholar 

  11. Barnett HL, McNamara H, Hare RS, Hare K (1948) Inulin, urea, mannitol, and PAH clearance ratios in premature infants. Fed Proc 7:5–6

    CAS  PubMed  Google Scholar 

  12. Toth-Heyn P, Drukker A, Guignard JP (2000) The stressed neonatal kidney: from pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr Nephrol 14:227–239

    Article  CAS  PubMed  Google Scholar 

  13. Loebstein R, Koren G (1998) Clinical pharmacology and therapeutic drug monitoring in neonates and children. Pediatr Rev 19:423–428

    CAS  PubMed  Google Scholar 

  14. Solhaug MJ, Wallace MR, Granger JP (1990) Role of renal interstitial hydrostatic pressure in the blunted natriuretic response to saline loading in the piglet. Pediatr Res 28:460–463

    Article  CAS  PubMed  Google Scholar 

  15. Filler G, Yasin A, Medeiros M (2014) Methods of assessing renal function. Pediatr Nephrol 29:183–192

    Article  PubMed  Google Scholar 

  16. Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G (2011) Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol 6:274–280

    Article  PubMed Central  PubMed  Google Scholar 

  17. Moore WM (1971) Placental permeability to creatinine and urea. J Reprod Fertil 25:456

    Article  CAS  PubMed  Google Scholar 

  18. Bariciak E, Abeeryasin HJ, Walker M, Lepage N, Filler G (2011) Preliminary reference intervals for cystatin C and beta-trace protein in preterm and term neonates. Clin Biochem 44:1156–1159

    Article  CAS  PubMed  Google Scholar 

  19. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR–history, indications, and future research. Clin Biochem 38:1–8

    Article  CAS  PubMed  Google Scholar 

  20. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  CAS  PubMed  Google Scholar 

  21. Pham-Huy A, Leonard M, Lepage N, Halton J, Filler G (2003) Measuring glomerular filtration rate with cystatin C and [beta]-trace protein in children with spina bifida. J Urol 169:2312–2315

    Article  CAS  PubMed  Google Scholar 

  22. Sharma AP, Kathiravelu A, Nadarajah R, Yasin A, Filler G (2009) Body mass does not have a clinically relevant effect on cystatin C eGFR in children. Nephrol Dial Transplant 24:470–474

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Munoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82:445–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee JH, Hahn WH, Ahn J, Chang JY, Bae CW (2013) Serum cystatin C during 30 postnatal days is dependent on the postconceptional age in neonates. Pediatr Nephrol 28:1073–1078

    Article  PubMed  Google Scholar 

  25. Filler G, Lepage N (2013) Cystatin C adaptation in the first month of life. Pediatr Nephrol 28:991–994

    Article  PubMed  Google Scholar 

  26. Treiber M, Pecovnik Balon B, Gorenjak M (2014) A new serum Cystatin-C formula for estimation of glomerular filtration rate in newborns. Pediatr Nephrol. doi:10.1007/s00467-014-3029-7

  27. Di Zazzo G, Stringini G, Matteucci MC, Muraca M, Malena S, Emma F (2011) Serum creatinine levels are significantly influenced by renal size in the normal pediatric population. Clin J Am Soc Nephrol 6:107–113

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kandasamy Y, Smith R, Wright IM, Lumbers ER (2013) Extra-uterine renal growth in preterm infants: oligonephropathy and prematurity. Pediatr Nephrol 28:1791–1796

    Article  PubMed Central  PubMed  Google Scholar 

  29. Singh GR, Hoy WE (2004) Kidney volume, blood pressure, and albuminuria: findings in an Australian aboriginal community. Am J Kidney Dis 43:254–259

    Article  PubMed  Google Scholar 

  30. Brennan S, Kandasamy Y (2013) Renal parenchymal thickness as a measure of renal growth in low-birth-weight infants versus normal-birth-weight infants. Ultrasound Med Biol 39:2315–2320

    Article  PubMed  Google Scholar 

  31. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G (2014) Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 164(1026–1031):e1022

    Google Scholar 

  32. Hricak H, Lieto RP (1983) Sonographic determination of renal volume. Radiology 148:311–312

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen EI, Sandstrom M, Honore PH, Ewald U, Friberg LE (2009) Developmental pharmacokinetics of gentamicin in preterm and term neonates: population modelling of a prospective study. Clin Pharmacokinet 48:253–263

    Article  CAS  PubMed  Google Scholar 

  34. Plebani M, Mussap M, Bertelli L, Moggi G, Ruzzante N, Fanos V, Cataldi L (1997) Determination of blood cystatin C in pregnant women during labor and in their newborns. Pediatr Med Chir 19:325–329

    CAS  PubMed  Google Scholar 

  35. Cataldi L, Mussap M, Bertelli L, Ruzzante N, Fanos V, Plebani M (1999) Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol 16:287–295

    Article  CAS  PubMed  Google Scholar 

  36. Bokenkamp A, Dieterich C, Dressler F, Muhlhaus K, Gembruch U, Bald R, Kirschstein M (2001) Fetal serum concentrations of cystatin C and beta2-microglobulin as predictors of postnatal kidney function. Am J Obstet Gynecol 185:468–475

    Article  CAS  PubMed  Google Scholar 

  37. Filler G, Kusserow C, Lopes L, Kobrzynski M (2014) Beta-trace protein as a marker of GFR–history, indications, and future research. Clin Biochem 47:1188–1194

    Article  CAS  PubMed  Google Scholar 

  38. Filler G, Lopes L, Harrold J, Bariciak E (2014) beta-trace protein may be a more suitable marker of neonatal renal function. Clin Nephrol 81:269–276

    Article  CAS  PubMed  Google Scholar 

  39. Yasin A, Filler G (2013) Evaluating Canadian children: WHO, NHANES or what? J Paediatr Child Health 49:282–290

    Article  PubMed  Google Scholar 

  40. Contrepois A, Brion N, Garaud JJ, Faurisson F, Delatour F, Levy JC, Deybach JC, Carbon C (1985) Renal disposition of gentamicin, dibekacin, tobramycin, netilmicin, and amikacin in humans. Antimicrob Agents Chemother 27:520–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Filler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filler, G. A step forward towards accurately assessing glomerular filtration rate in newborns. Pediatr Nephrol 30, 1209–1212 (2015). https://doi.org/10.1007/s00467-014-3014-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-3014-1

Keywords

Navigation