Skip to main content
Log in

Pediatric reference ranges for acute kidney injury biomarkers

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Novel urinary biomarkers are useful for the prediction of acute kidney injury (AKI). Most promising are the urine markers NGAL, IL-18, KIM-1, and LFABP. Each of these has shown considerable promise diagnosing AKI earlier than serum creatinine (Scr) using disease controls. We set out to determine reference levels of these markers in a healthy pediatric population.

Methods

Urine was collected from 368 healthy children and assayed for NGAL, IL-18, KIM-1, and LFABP using commercially available kits or assay materials. Analysis of biomarkers by linear regression and according to age groups (3–<5 years; 5–<10; 10–<15; 15–<18) was performed to determine if biomarker levels differed with age and gender.

Results

Median values were: NGAL (6.6 ng/ml; IQR 2.8–17), IL-18 (21.6 pg/ml; IQR 13.6–32.9), KIM-1 (410 pg/ml; IQR 226–703), LFABP (3.4 ng/ml; IQR 1.6–6.0). Significant gender differences were found with NGAL and IL-18 and significant age differences were found with all markers. 95th percentile values for each marker varied with age and gender greater than median values.

Conclusions

This is the largest pediatric reference range study for the urinary measurement of NGAL, IL-18, KIM-1, and LFABP and highlights age and gender differences in these markers. This information is essential for rational interpretation of studies and clinical trials utilizing these emerging AKI biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL (2006) 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 69:184–189

    Article  CAS  PubMed  Google Scholar 

  2. Schneider J, Khemani R, Grushkin C, Bart R (2010) Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 38:933–939

    Article  CAS  PubMed  Google Scholar 

  3. Moffett BS, Goldstein SL (2011) Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol 6:856–863

    Article  PubMed Central  PubMed  Google Scholar 

  4. Peruzzi L, Bonaudo R, Amore A, Chiale F, Donadio ME, Vergano L, Coppo R (2014) Neonatal sepsis with multi-organ failure and treated with a new dialysis device specifically designed for newborns. Case Rep Nephrol Urol 4:113–119

    Article  PubMed Central  PubMed  Google Scholar 

  5. Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A (2013) Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 131:e1502–e1508

    Article  PubMed  Google Scholar 

  6. Sadak KT, Fultz K, Mendizabal A, Reaman G, Garcia-Gonzalez P, Levine PH (2014) International patterns of childhood chronic myeloid leukemia: comparisons between the United States and resource-restricted nations. Pediatr Blood Cancer 61:1774–1778

    Article  CAS  PubMed  Google Scholar 

  7. Letellier G, Desjarlais F (1985) Analytical interference of drugs in clinical chemistry: II–the interference of three cephalosporins with the determination of serum creatinine concentration by the Jaffe reaction. Clin Biochem 18:352–356

    Article  CAS  PubMed  Google Scholar 

  8. Weber JA, van Zanten AP (1991) Interferences in current methods for measurements of creatinine. Clin Chem 37:695–700

    CAS  PubMed  Google Scholar 

  9. Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122

    Article  CAS  PubMed  Google Scholar 

  10. Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520

    Article  CAS  PubMed  Google Scholar 

  11. Hewitt SM, Dear J, Star RA (2004) Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 15:1677–1689

    Article  PubMed  Google Scholar 

  12. Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73:1008–1016

    Article  CAS  PubMed  Google Scholar 

  13. Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, Noiri E, Devarajan P (2007) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472

    Article  PubMed  Google Scholar 

  14. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543

    Article  CAS  PubMed  Google Scholar 

  15. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238

    Article  CAS  PubMed  Google Scholar 

  16. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 3:665–673

    Article  PubMed Central  PubMed  Google Scholar 

  17. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P (2011) Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol 58:2301–2309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bolignano D, Lacquaniti A, Coppolino G, Campo S, Arena A, Buemi M (2008) Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res 31:255–258

    Article  CAS  PubMed  Google Scholar 

  19. Peralta CA, Katz R, Bonventre JV, Sabbisetti V, Siscovick D, Sarnak M, Shlipak MG (2012) Associations of urinary levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis 60:904–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kamijo-Ikemori A, Ichikawa D, Matsui K, Yokoyama T, Sugaya T, Kimura K (2013) Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan. Rinsho Byori 61:635–640

    CAS  PubMed  Google Scholar 

  21. Chaturvedi S, Farmer T, Kapke GF (2009) Assay validation for KIM-1: human urinary renal dysfunction biomarker. Int J Biol Sci 5:128–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024

    Article  CAS  PubMed  Google Scholar 

  23. Brunner HI, Mueller M, Rutherford C, Passo MH, Witte D, Grom A, Mishra J, Devarajan P (2006) Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus. Arthritis Rheum 54:2577–2584

    Article  CAS  PubMed  Google Scholar 

  24. Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P (2006) Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 6:1639–1645

    Article  CAS  PubMed  Google Scholar 

  25. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70:199–203

    Article  CAS  PubMed  Google Scholar 

  26. Schinstock CA, Semret MH, Wagner SJ, Borland TM, Bryant SC, Kashani KB, Larson TS, Lieske JC (2013) Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol Dial Transplant 28:1175–1185

    Article  CAS  PubMed  Google Scholar 

  27. Kaufeld JK, Gwinner W, Scheffner I, Haller HG, Schiffer M (2012) Urinary NGAL ratio is not a sensitive biomarker for monitoring acute tubular injury in kidney transplant patients: NGAL and ATI in renal transplant patients. J Transplant 2012:8

    Article  Google Scholar 

  28. Cullen MR, Murray PT, Fitzgibbon MC (2012) Establishment of a reference interval for urinary neutrophil gelatinase-associated lipocalin. Ann Clin Biochem 49:190–193

    Article  CAS  PubMed  Google Scholar 

  29. McWilliam SJ, Antoine DJ, Sabbisetti V, Pearce RE, Jorgensen AL, Lin Y, Leeder JS, Bonventre JV, Smyth RL, Pirmohamed M (2014) Reference intervals for urinary renal injury biomarkers KIM-1 and NGAL in healthy children. Biomark Med. doi:10.2217/bmm.14.36

    PubMed Central  PubMed  Google Scholar 

  30. Parikh CR, Devarajan P, Zappitelli M, Sint K, Thiessen-Philbrook H, Li S, Kim RW, Koyner JL, Coca SG, Edelstein CL, Shlipak MG, Garg AX, Krawczeski CD (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol 22:1737–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cangemi G, Storti S, Cantinotti M, Fortunato A, Emdin M, Bruschettini M, Bugnone D, Melioli G, Clerico A (2013) Reference values for urinary neutrophil gelatinase-associated lipocalin (NGAL) in pediatric age measured with a fully automated chemiluminescent platform. Clin Chem Lab Med 51:1101–1105

    Article  CAS  PubMed  Google Scholar 

  32. Grenier FC, Ali S, Syed H, Workman R, Martens F, Liao M, Wang Y, Wong PY (2010) Evaluation of the ARCHITECT urine NGAL assay: assay performance, specimen handling requirements and biological variability. Clin Biochem 43:615–620

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Guo W, Zhang J, Xu C, Yu S, Mao Z, Wu J, Ye C, Mei C, Dai B (2013) Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis 62:1058–1067

    Article  CAS  PubMed  Google Scholar 

  34. Xin C, Yulong X, Yu C, Changchun C, Feng Z, Xinwei M (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Ren Fail 30:904–913

    Article  PubMed  Google Scholar 

  35. Ferguson MA, Vaidya VS, Waikar SS, Collings FB, Sunderland KE, Gioules CJ, Bonventre JV (2010) Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int 77:708–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL (2013) Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis 61:430–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, Noiri E, Devarajan P (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Zhu M, Xia Q, Wang S, Qian J, Lu R, Che M, Dai H, Wu Q, Ni Z, Lindholm B, Axelsson J, Yan Y (2012) Urinary neutrophil gelatinase-associated lipocalin and L-type fatty acid binding protein as diagnostic markers of early acute kidney injury after liver transplantation. Biomarkers 17:336–342

    Article  CAS  PubMed  Google Scholar 

  39. Shao X, Tian L, Xu W, Zhang Z, Wang C, Qi C, Ni Z, Mou S (2014) Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One 9:e84131

    Article  PubMed Central  PubMed  Google Scholar 

  40. Liangos O, Tighiouart H, Perianayagam MC, Kolyada A, Han WK, Wald R, Bonventre JV, Jaber BL (2009) Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 14:423–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113:192–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hall IE, Yarlagadda SG, Coca SG, Wang Z, Doshi M, Devarajan P, Han WK, Marcus RJ, Parikh CR (2010) IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol 21:189–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11:R84

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, Schibler KR (2008) Urinary NGAL in premature infants. Pediatr Res 64:423–428

    Article  CAS  PubMed  Google Scholar 

  45. Coca SG, Garg AX, Thiessen-Philbrook H, Koyner JL, Patel UD, Krumholz HM, Shlipak MG, Parikh CR (2014) Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J Am Soc Nephrol 25:1063–1071

    Article  CAS  PubMed  Google Scholar 

  46. Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Coca SG (2013) Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 8:1079–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH P50 DK096418 to MB and PD. This research was supported in part by the Cincinnati Children’s Research Foundation and its Cincinnati Genomic Control Cohort.

Disclosures

PD is a co-inventor on patents submitted for the use of NGAL as a biomarker of kidney injury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Bennett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, M.R., Nehus, E., Haffner, C. et al. Pediatric reference ranges for acute kidney injury biomarkers. Pediatr Nephrol 30, 677–685 (2015). https://doi.org/10.1007/s00467-014-2989-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2989-y

Keywords

Navigation