Skip to main content

Advertisement

Log in

Paediatrics, insulin resistance and the kidney

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM (2012) Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 307:483–490

    Article  PubMed  Google Scholar 

  2. Invitti C, Maffeis C, Gilardini L, Pontiggia B, Mazzilli G, Girola A, Sartorio A, Morabito F, Viberti GC (2005) Metabolic syndrome in obese Caucasian children: prevalence using WHO-derived criteria and association with nontraditional cardiovascular risk factors. Int J Obes 30:627–633

    Article  Google Scholar 

  3. Ford ES, Li C, Zhao G, Pearson WX, Mokdad AH (2008) Prevalence of the metabolic syndrome among U.S. adolescents using the definition from the International Diabetes Federation. Diabetes Care 31:587–589

    Article  PubMed  Google Scholar 

  4. Kelishadi R (2007) Childhood overweight, obesity, and the metabolic syndrome in developing countries. Epidemiol Rev 29:62–76

    Article  PubMed  Google Scholar 

  5. Weiss R, Dziura J (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362–2374

    Article  CAS  PubMed  Google Scholar 

  6. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  CAS  PubMed  Google Scholar 

  7. Berman L (2012) Physical activity is related to insulin sensitivity in children and adolescents, independent of adiposity: a review of the literature. Diabetes Metab Res Rev 28:395–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Moran A, Jacobs DR, Steinberger J, Hong CP, Prineas R, Luepker R, Sinaiko AR (1999) Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes 48:2039–2044

    Article  CAS  PubMed  Google Scholar 

  9. Bremer A, Mietus-Snyder M, Lustig RH (2012) Toward a unifying hypothesis of metabolic syndrome. Pediatrics 129:557–570

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, Wong G, Bennett P, Shaw J, Caprio S, International Diabetes Federation Task Force on Epidemiology and Prevention of Diabetes (2007) The metabolic syndrome in children and adolescents. Lancet 369:2059–2061

    Article  PubMed  Google Scholar 

  11. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  CAS  PubMed  Google Scholar 

  12. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM (1993) Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:62–67

    Article  CAS  PubMed  Google Scholar 

  13. Hannon TS, Janosky J, Arslanian SA, Arslanian SA (2006) Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res 60:759–763

    Article  CAS  PubMed  Google Scholar 

  14. Dogra GK, Herrmann S, Irish AB, Thomas MA, Watts GF (2002) Insulin resistance, dyslipidaemia, inflammation and endothelial function in nephrotic syndrome. Nephrol Dial Transplant 17:2220–2225

    Article  CAS  PubMed  Google Scholar 

  15. Jin J, Jin B, Huang S, Yuan Y, Ding G, Bao H, Chen Y, Han Y, Zhao F, Zhang A (2012) Insulin resistance in children with primary nephrotic syndrome and normal renal function. Pediatr Nephrol 27:1901–1909

    Article  PubMed  Google Scholar 

  16. Mak RH (2008) Insulin and its role in chronic kidney disease. Pediatr Nephrol 23:355–362

    Article  PubMed  Google Scholar 

  17. Becker B, Kronenberg F, Kielstein JT, Haller H, Morath C, Ritz E, Fliser D, MMKD Study Group (2005) Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study. J Am Soc Nephrol 16:1091–1098

    Article  CAS  PubMed  Google Scholar 

  18. DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J (1981) Insulin resistance in uremia. J Clin Invest 67:563–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mak RH (1998) Effect of metabolic acidosis on insulin action and secretion in uremia. Kidney Int 54:603–607

    Article  CAS  PubMed  Google Scholar 

  20. Yoo TW, Sung KC, Shin HS, Kim BJ, Kim BS, Kang JH, Lee MH, Park JR, Kim H, Rhee EJ, Lee WY, Kim SW, Ryu SH, Keum DG (2005) Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ J 69:928–933

    Article  CAS  PubMed  Google Scholar 

  21. Avramoglu RK, Qiu W, Adeli K (2003) Mechanisms of metabolic dyslipidemia in insulin resistant states: deregulation of hepatic and intestinal lipoprotein secretion. Front Biosci 8:d464–d476

    Article  CAS  PubMed  Google Scholar 

  22. Lithell HO (1991) Effect of antihypertensive drugs on insulin, glucose, and lipid metabolism. Diabetes Care 14:203–209

    Article  CAS  PubMed  Google Scholar 

  23. Van Duijnhoven EM, Christiaans MH, Boots JM, Nieman FH, Wolffenbuttel BH, van Hooff JP (2002) Glucose metabolism in the first 3 years after renal transplantation in patients receiving tacrolimus versus cyclosporine-based immunosuppression. J Am Soc Nephrol 13:213–220

    PubMed  Google Scholar 

  24. Litwin M, Niemirska A (2014) Metabolic syndrome in children with chronic kidney disease and after renal transplantation. Pediatr Nephrol 29:203–216

    Article  PubMed Central  PubMed  Google Scholar 

  25. Grasso V, Colombo C, Favalli V, Galderisi A, Rabbone I, Gombos S, Bonora E, Massa O, Meschi F, Cerutti F, Iafusco D, Bonfanti R, Monciotti C, Barbetti F (2013) Six cases with severe insulin resistance (SIR) associated with mutations of insulin receptor: Is a Bartter-like syndrome a feature of congenital SIR? Acta Diabetol 50:951–957

    Article  PubMed  Google Scholar 

  26. Kosztolányi G (1997) Leprechaunism/Donohue syndrome/insulin receptor gene mutations: a syndrome delineation story from clinicopathological description to molecular understanding. Eur J Pediatr 156:253–255

    Article  PubMed  Google Scholar 

  27. Longo N, Wang Y, Smith SA, Langley SD, DiMeglio LA, Giannella-Neto D (2002) Genotype-phenotype correlation in inherited severe insulin resistance. Hum Mol Genet 11:1465–1475

    Article  CAS  PubMed  Google Scholar 

  28. McDonald A, Williams RM, Regan FM, Semple RK, Dunger DB (2007) IGF-I treatment of insulin resistance. Eur J Endocrinol 157[Suppl]:S51–S56

    Article  CAS  PubMed  Google Scholar 

  29. Hale LJ, Coward RJ (2013) Insulin signalling to the kidney in health and disease. Clin Sci 124:351–370

    Article  CAS  PubMed  Google Scholar 

  30. Ellis EN, Kemp SF, Frindik JP, Elders MJ (1991) Glomerulopathy in patient with Donohue syndrome (leprechaunism). Diabetes Care 14:413–414

    Article  CAS  PubMed  Google Scholar 

  31. Hovnik T, Bratanič N, Podkrajšek KT, Kovač J, Paro D, Podnar T, Bratina N, Battelino T (2013) Severe progressive obstructive cardiomyopathy and renal tubular dysfunction in Donohue syndrome with decreased insulin receptor autophosphorylation due to a novel INSR mutation. Eur J Pediatr 172:1125–1129

    Article  PubMed  Google Scholar 

  32. Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, Satchell S, Holman GD, Kerjaschki D, Tavaré JM, Mathieson PW, Saleem MA (2005) The human glomerular podocyte is a novel target for insulin action. Diabetes 54:3095–3102

    Article  CAS  PubMed  Google Scholar 

  33. Hale LJ, Hurcombe J, Lay A, Santamaría B, Valverde AM, Saleem MA, Mathieson PW, Welsh GI, Coward RJ (2013) Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am J Physiol Renal Physiol 305:F182–F188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Welsh GI, Hale LJ, Eremina V, Jeansson M, Maezawa Y, Lennon R, Pons DA, Owen RJ, Satchell SC, Miles MJ, Caunt CJ, McArdle CA, Pavenstädt H, Tavaré JM, Herzenberg AM, Kahn CR, Mathieson PW, Quaggin SE, Saleem MA, Coward RJ (2010) Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 12:329–340

    Article  CAS  PubMed  Google Scholar 

  35. Kim EY, Dryer SE (2011) Effects of insulin and high glucose on mobilization of slo1 BKCa channels in podocytes. J Cell Physiol 226:2307–2315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kim EY, Anderson M, Dryer SE (2012) Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species. Am J Physiol Renal Physiol 302:F298–F307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Plum L, Schubert M, Brüning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16:59–65

    Article  CAS  PubMed  Google Scholar 

  38. Canaud G, Bienaimé F, Viau A, Treins C, Baron W, Nguyen C, Burtin M, Berissi S, Giannakakis K, Muda AO, Zschiedrich S, Huber TB, Friedlander G, Legendre C, Pontoglio M, Pende M, Terzi F (2013) AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med 19:1288–1296

    Article  CAS  PubMed  Google Scholar 

  39. Arnqvist HJ, Ballermann BJ, King GL (1988) Receptors for and effects of insulin and IGF-I in rat glomerular mesangial cells. Am J Physiol 254:C411–C416

    CAS  PubMed  Google Scholar 

  40. Berfielda K, Raugi GJ, Abrass CK (1996) Insulin induces rapid and specific rearrangement of the cytoskeleton of rat mesangial cells in vitro. J Histochem Cytochem 44:91–101

    Article  Google Scholar 

  41. Heilig CW, Deb DK, Abdul A, Riaz H, James LR, Salameh J, Nahman NS Jr (2013) GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am J Nephrol 38:39–49

    Article  CAS  PubMed  Google Scholar 

  42. Hale LJ, Coward RJ (2013) The insulin receptor and the kidney. Curr Opin Nephrol Hypertens 22:100–106

    Article  CAS  PubMed  Google Scholar 

  43. Tiwari S, Riazi S, Ecelbarger CA (2007) Insulin’s impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am J Physiol Renal Physiol 293:F974–F984

    Article  CAS  PubMed  Google Scholar 

  44. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24:382–391

    Article  CAS  PubMed  Google Scholar 

  45. Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE (2004) Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab 287:E1049–E1056

    Article  CAS  PubMed  Google Scholar 

  46. Tiwari S, Singh RS, Li L, Tsukerman S, Godbole M, Pandey G, Ecelbarger CM (2013) Deletion of the insulin receptor in the proximal tubule promotes hyperglycemia. J Am Soc Nephrol 24:1209–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Féraille E, Carranza ML, Gonin S, Béguin P, Pedemonte C, Rousselot M, Caverzasio J, Geering K, Martin PY, Favre H (1999) Insulin-induced stimulation of Na+, K (+)-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell 10:2847–2859

    Article  PubMed Central  PubMed  Google Scholar 

  48. Zhang Y-H, Alvarez de la Rosa D, Canessa CM, Hayslett JP (2005) Insulin-induced phosphorylation of ENaC correlates with increased sodium channel function in A6 cells. Am J Physiol Cell Physiol 288:C141–C147

    CAS  PubMed  Google Scholar 

  49. Dai LJ, Ritchie G, Bapty BW, Kerstan D, Quamme GA (1999) Insulin stimulates Mg2+ uptake in mouse distal convoluted tubule cells. Am J Physiol 277:F907–F913

    CAS  PubMed  Google Scholar 

  50. Tiwari S, Sharma N, Gill PS, Igarashi P, Kahn CR, Wade JB, Ecelbarger CM (2008) Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proc Natl Acad Sci USA 105:6469–6474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Li L, Garikepati RM, Tsukerman S, Kohan D, Wade JB, Tiwari S, Ecelbarger CM (2013) Reduced ENaC activity and blood pressure in mice with genetic knockout of the insulin receptor in the renal collecting duct. Am J Physiol Renal Physiol 304:F279–F288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Simpkin A, Tasic V, Bockenhauer D (2013) Mutations in the insulin receptor INSR are associated with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 24:827A

    Google Scholar 

  53. Panchapakesan U, Chen X-M, Pollock CA (2005) Drug insight: thiazolidinediones and diabetic nephropathy—relevance to renoprotection. Nat Clin Pract Nephrol 1:33–43

    Article  CAS  PubMed  Google Scholar 

  54. Ma LJ, Marcantoni C, Linton MF, Fazio S, Fogo AB (2001) Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int 59:1899–1910

    Article  CAS  PubMed  Google Scholar 

  55. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    Article  CAS  PubMed  Google Scholar 

  56. Lewis JD, Ferrara A, Peng T, Hedderson M, Bilker WB, Quesenberry CP Jr, Vaughn DJ, Nessel L, Selby J, Strom BL (2011) Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care 34:916–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

RJC is supported by the MRC (MR/K010492/1) and Kidney Research UK. MM is supported by the National Institute of Health Research as an Academic Clinical Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Coward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marlais, M., Coward, R.J. Paediatrics, insulin resistance and the kidney. Pediatr Nephrol 30, 1217–1224 (2015). https://doi.org/10.1007/s00467-014-2890-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2890-8

Keywords

Navigation