Skip to main content

Advertisement

Log in

Acidosis: progression of chronic kidney disease and quality of life

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Metabolic acidosis (MA) is relatively common in patients with chronic kidney disease (CKD) particularly in stages 4 and 5. It is assumed to play a contributory role in the development of several complications including bone disease, skeletal muscle wasting, altered protein synthesis, and degradation. Recent evidence also suggests that even mild acidosis might play a role in progressive glomerular filtration rate loss. Experimental and clinical studies suggest that correction of acidosis by alkali therapy attenuates these complications and improves quality of life. Despite several recent small and single-center studies supporting this notion, more robust evidence is required with regard to the long-term benefits of alkali therapy, type of alkali supplements, and the optimal level of serum bicarbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Jeffrey A, Kurtz I (2005) Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis 45:978–993

    Article  Google Scholar 

  2. Mitch WE (1997) Influence of metabolic acidosis on nutrition. Am J Kidney Dis 29:16–18

    Article  Google Scholar 

  3. Verove C, Maisonneuve N, El Azouzi A, Boldron A, Azar R (2002) Effect of the correction of metabolic acidosis on Nutritional status in elderly patients with chronic renal failure. J Ren Nutr 12:224–228

    Article  PubMed  Google Scholar 

  4. Ballmer PE, McNurlan MA, Hulter HN, Anderso SE, Garlick PJ, Krapf K (1995) Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest 95:39–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mitch WE, Du J, Bailey J, Price SR (1999) Mechanisms causing muscle proteolysis in uraemia: the influence on insulin and cytokines. Miner Electrolyte Metab 25:216–219

    Article  CAS  PubMed  Google Scholar 

  6. Löfberg E, Wernerman J, Anderstam B, Bergström J (1997) Correction of acidosis in dialysis patients increases branched chain and total essential amino acid levels in muscle. Clin Nephrol 48:230–237

    PubMed  Google Scholar 

  7. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE (1996) The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest 97:1447–1453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Graham KA, Reaich D, Channon SM, Downie S, Gilmour E, Passlick-Deetjen J, Goodship THJ (1996) Correction of acidosis in CAPD decreases whole body protein degradation. Kidney Int 49:1396–1400

    Article  CAS  PubMed  Google Scholar 

  9. Graham KA, Reaich D, Channon SM, Downie S, Goodship THJ (1997) Correction of acidosis in haemodialysis decreases whole body protein degradation. J Am Soc Nephrol 8:632–637

    CAS  PubMed  Google Scholar 

  10. Williams AJ, Dittmer ID, McArley A, Clarke J (1997) High bicarbonate dialysate in haemodialysis patients: effects on acidosis and nutritional status. Nephrol Dial Transplant 12:2633–2637

    Article  CAS  PubMed  Google Scholar 

  11. Kooman JP, Deutz NE, Zijlmans P, Wall Bake A, Den A, Gerlag P, Van Hooff F, Leunissen K (1997) The influence of bicarbonate supplementation on plasma levels of branched chain amino acids in haemodialysis patients with metabolic acidosis. Nephrol Dial Transplant 12:2397–2401

    Article  CAS  PubMed  Google Scholar 

  12. Dou L, Brunet P, Dignat-George F, Sampol J, Berland Y (1998) Effect of uremia and haemodialysis on soluble L-selectin and leukocyte surface CD11b and L selectin. Am J Kidney Dis 31:67–73

    Article  CAS  PubMed  Google Scholar 

  13. Gadola L, Noboa O, Marquez MN (2004) Calcium citrate ameliorates the progression of chronic renal injury. Kidney Int 65:1224–1230

    Article  CAS  PubMed  Google Scholar 

  14. Nath KA, Hostetter MK, Hostetter TH (1985) Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J Clin Invest 76:667–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Torres VE, Cowley BD, Branden MG, Yoshida I, Gattone VH (2001) Long-term ammonium chloride or sodium bicarbonate treatment in two models of polycystic kidney disease. Exp Nephrol 9:171–180

    Article  CAS  PubMed  Google Scholar 

  16. Halperin ML, Ethier JH, Kamel KS (1989) Ammonium excretion in chronic metabolic acidosis: benefits and risks. Am J Kidney Dis 14:267–271

    Article  CAS  PubMed  Google Scholar 

  17. Tanner GA, Tanner JA (2000) Citrate therapy for polycystic kidney disease in rats. Kidney Int 58:1859–1869

    Article  CAS  PubMed  Google Scholar 

  18. Phisitkul S, Hacker C, Simoni J, Tran RM, Wesson DE (2008) Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int 73:192–199

    Article  CAS  PubMed  Google Scholar 

  19. Throssel D, Brown J, Harris KP, Walls J (1995) Metabolic acidosis does not contribute to chronic renal injury in the rat. Clin Sci 89:643–650

    Google Scholar 

  20. Jara A, Felsenfeld AJ, Bover J, Kleeman CR (2000) Chronic metabolic acidosis in azotemic rats on a high phosphate diet halts the progression of renal disease. Kidney Int 58:1023–1032

    Article  CAS  PubMed  Google Scholar 

  21. Jara A, Chacon C, Ibaceta M, Valdivieso A, Felsenfeld AJ (2004) Effect of ammonium chloride and dietary phosphorus in the azotaemic rat. II. Kidney hypertrophy and calcium deposition. Nephrol Dial Transplant 19:1993–1998

    Article  CAS  PubMed  Google Scholar 

  22. Lyon DM, Dunlop DM, Steward CP (1931) The alkaline treatment of chronic nephritis. Lancet 218:1009–1013

    Article  Google Scholar 

  23. Rustom R, Grime JS, Costigan M, Maltby P, Hughes A, Taylor W, Shenkin A, Critchley M, Bone JM (1998) Oral sodium bicarbonate reduces proximal renal tubular peptide catabolism, ammoniogenesis, and tubular damage in renal patients. Ren Fail 20:371–382

    Article  CAS  PubMed  Google Scholar 

  24. Shah SN, Abramowitz M, Hostetter TH, Melamed ML (2009) Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis 54:270–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. De-Brito Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM (2009) Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 20:2075–2084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Phisitkul S, Khanna A, Simoni J, Broglio K, Sheather S, Rajab MH, Wesson DE (2010) Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int 77:617–623

    Article  CAS  PubMed  Google Scholar 

  27. Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE (2010) Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 78:303–309

    Article  CAS  PubMed  Google Scholar 

  28. Abramowitz MK, Melamed ML, Bauer C, Raff AC, Hostetter TH (2013) Effects of oral sodium bicarbonate in patients with CKD. Clin J Am Soc Nephrol 8:714–720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Susantitaphong P, Sewaralthahab K, Balk EM, Jaber BL, Madias NE (2012) Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. Am J Nephrol 35:540–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Husted FC, Nolph KD, Maher JF (1975) NaHCO3 and NaC1 tolerance in chronic renal failure. J Clin Invest 56:414–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kraut JA (2000) Disturbances of acid–base balance and bone disease in end-stage renal disease. Semin Dial 13:261–265

    Article  CAS  PubMed  Google Scholar 

  32. McSherry E, Morris RC Jr (1978) Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest 61:509–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. KDOQI Work Group (2009) KDOQI clinical practice guideline for nutrition in children with CKD: 2008 update. Executive summary. Am J Kidney Dis 53 [3 Suppl 2]:S11–S104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad M. Yaqoob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de-Brito Ashurst, I., O’Lone, E., Kaushik, T. et al. Acidosis: progression of chronic kidney disease and quality of life. Pediatr Nephrol 30, 873–879 (2015). https://doi.org/10.1007/s00467-014-2873-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-014-2873-9

Keywords

Navigation