Skip to main content

Advertisement

Log in

Heart rate and blood pressure variability in children with chronic kidney disease: a report from the CKiD study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Autonomic nervous system dysfunction and sympathetic nervous system over-activity play important roles in the development of hypertension associated with chronic kidney disease (CKD). In adults, increased blood pressure variability (BPV) appears to be directly related to sympathetic over-activity with increased risk of end-organ damage and cardiovascular events. Decreased heart rate variability (HRV) has been observed in adults with CKD, and is an independent predictor of mortality.

Methods

The purpose of this study was to evaluate BPV and HRV in pediatric patients enrolled in the Chronic Kidney Disease in Children Study. Ambulatory blood pressure monitoring data were available for analysis of 215 person-visits from 144 children that were not receiving antihypertensive medications.

Results

BPV and HRV were determined by standard deviation and coefficient of variation for heart rate and systolic and diastolic blood pressure for each patient averaged for wake/sleep periods during 24-h monitoring. Uniformly lower values were displayed during sleep versus wake periods: BPV was 20 % lower during sleep (p < 0.001) and HRV was 30 % lower during sleep (p < 0.001). A significant increase in systolic BPV was observed in hypertensive children compared to children with normal blood pressure (6.9 %, p = 0.009). Increased diastolic BPV was detected among hypertensive children during sleep period compared to children with normal blood pressure (11.5 %, p = 0.008). There was a significant decrease in HRV in hypertensive compared to normotensive children (−8.2 %, p = 0.006).

Conclusions

These findings are similar to those in adult patients and may underscore childhood origin and natural progression of adverse cardiovascular outcomes in adults with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Flynn JT, Woroniecki RP (2004) Pathophysiology of hypertension. In: Avner ED, Harmon WE, Niaudet P (eds) Pediatric nephrology, 5th ed. Lippincott, Williams & Wilkins, Philadelphia, PA: pp 1153–1177

  2. Phillips JK (2005) Pathogenesis of hypertension in renal failure: role of the sympathetic nervous system and renal afferents. Clin Exp Pharmacol Physiol 32:415–418

    Article  CAS  PubMed  Google Scholar 

  3. Converse RL, Jacobsen NJ, Toto RD, Jost CMT, Cosentino F, Fouad-Tarazi F, Victor RG (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327:1912–1918

    Article  PubMed  Google Scholar 

  4. Koomans HA, Blankestinjn PJ, Joles JA (2004) Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol 15:524–537

    Article  PubMed  Google Scholar 

  5. Joles JA, Koomans HA (2004) Causes and consequences of increased sympathetic activity in renal disease. Hypertension 43:699–706

    Article  CAS  PubMed  Google Scholar 

  6. Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79:733–743

    Article  CAS  PubMed  Google Scholar 

  7. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, Murata M, Kuroda T, Schwartz JE, Shimada K (2003) Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation 107:1401–1406

    Article  PubMed  Google Scholar 

  8. Mancia G, Di Rienzo M, Parati G, Grassi G (1997) Sympathetic activity, blood pressure variability and end-organ damage in hypertension. J Hum Hypertens 11:S3–S8

    PubMed  Google Scholar 

  9. Pierdomenico SD, Di Nicola M, Esposito AL, Di Mascio R, Ballone E, Lapenna D, Cuccurullo F (2009) Prognostic value of different indices of blood pressure variability in hypertensive patients. Am J Hypertens 22:842–847

    Article  PubMed  Google Scholar 

  10. Eguchi K, Ishikawa J, Hoshide S, Pickering TG, Schwartz JE, Shimada K, Kario K (2009) Night time blood pressure variability is a strong predictor for cardiovascular events in patients with type 2 diabetes. Am J Hypertens 22:46–51

    Article  PubMed  Google Scholar 

  11. Pringle E, Phillips C, Thijs L, Davidson C, Staessen JA, de Leeuw PW, Jaaskivi M, Nachev C, Parati G, O’Brien ET, Tuomilehto J, Webster J, Bulpitt CJ, Fagard RH, Syst-Eur investigators (2003) Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J Hypertens 21:2251–2257

    Article  CAS  PubMed  Google Scholar 

  12. Thomson BJ, McAreavey D, Neilson JM, Winney RJ, Ewing DJ (1991) Heart rate variability and cardiac arrhythmias in patients with chronic renal failure. Clin Auton Res 1:131–133

    Article  CAS  PubMed  Google Scholar 

  13. Ewing DJ (1991) Heart rate variability: an important new risk factor in patients following myocardial infarction. Clin Cardiol 14:683–685

    Article  CAS  PubMed  Google Scholar 

  14. Chandra P, Sands RL, Gillespie BW, Levin NW, Kotanko P, Kiser M, Finkelstein F, Hinderliter A, Pop-Busui R, Rajagopalan S, Saran R (2012) Predictors of heart rate variability and its prognostic significance in chronic kidney disease. Nephrol Dial Transplant 27:700–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Steinberg AA, Mars RL, Goldman DS, Percy RF (1998) Effect of end-stage renal disease on decreased heart rate variability. Am J Cardiol 82(1156–1158):A10

    Google Scholar 

  16. Di Leo R, Vita G, Messina C, Savica V (2005) Autonomic function in elderly uremics studied by spectral analysis of heart rate. Kidney Int 67:1521–1525

    Article  PubMed  Google Scholar 

  17. Dougherty CM, Burr RL (1992) Comparison of heart rate variability in survivors and non-survivors of sudden cardiac arrest. Am J Cardiol 70:441–448

    Article  CAS  PubMed  Google Scholar 

  18. Fukuta H, Hayano J, Ishihara S, Sakata S, Mukai S, Ohte N, Ojika K, Yagi K, Matsumoto H, Sohmiya S, Kimura G (2003) Prognostic value of heart rate variability in patients with end-stage renal disease on chronic haemodialysis. Nephrol Dial Transplant 18:318–325

    Article  PubMed  Google Scholar 

  19. Albaladejo P, Copie X, Boutouyrie P, Laloux B, Déclère AD, Smulyan H, Bénétos A (2001) Heart rate, arterial stiffness, and wave reflections in paced patients. Hypertension 38:949–952

    Article  CAS  PubMed  Google Scholar 

  20. Singh RB, Cornélissen G, Weydahl A, Schwartzkopff O, Katinas G, Otsuka K, Watanabe Y, Yano S, Mori H, Ichimaru Y, Mitsutake G, Pella D, Fanghong L, Zhao Z, Rao RS, Gvozdjakova A, Halberg F (2003) Circadian heart rate and blood pressure variability considered for research and patient care. Int J Cardiol 87:9–30

    Article  PubMed  Google Scholar 

  21. Ramirez-Villegas JF, Lam-Espinosa E, Ramirez-Moreno DF, Calvo-Echeverry PC, Agredo-Rodriguez W (2011) Heart rate variability dynamics for the prognosis of cardiovascular risk. PLoS One 6:e17060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, Wong C, Munoz A, Warady BA (2006) Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol 1:1006–1015

    Article  PubMed Central  PubMed  Google Scholar 

  23. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    CAS  PubMed  Google Scholar 

  24. Samuels J, Ng D, Flynn JT, Mitsnefes M, Poffenbarger T, Warady BA, Furth S (2012) Ambulatory blood pressure patterns in children with chronic kidney disease. Hypertension 60:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M, Mahoney L, McCrindle B, Mietus-Snyder M, Steinberger J, Daniels S, American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee (2008) Ambulatory blood pressure monitoring in children and adolescents: Recommendations for standard assessment–A scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young and the Council for High Blood Pressure Research. Hypertension 52:433–451

    Article  Google Scholar 

  26. Schwartz GJ, Furth S, Cole SR, Warady B, Munoz A (2006) Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int 69:2070–2077

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mancia G, Parati G, Castiglioni P, Tordi R, Tortorici E, Glavina F, Di Rienzo M (2003) Daily life blood pressure changes are steeper in hypertensive than in normotensive subjects. Hypertension 42:277–282

    Article  CAS  PubMed  Google Scholar 

  29. White WB (2005) Ambulatory blood pressure monitoring in clinical practice. N Engl J Med 348:2377–2378

    Article  Google Scholar 

  30. Zhao Z-Y, Zhao ZY, Wang YQ, Yan ZH, Cui J, Li YY (2005) Quantitative study of circadian variation of ambulatory blood pressure in Chinese healthy, hypertensive, and diabetes subjects. Clin Exp Hypertens 3:187–194

    Article  Google Scholar 

  31. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Pede S, Porcellati C (1998) Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension. Hypertension 32:983–988

    Article  CAS  PubMed  Google Scholar 

  32. Psaty BM, Furberg CD, Kuller LH, Cushman M, Savage PJ, Levine D, O’Leary DH, Bryan RN, Anderson M, Lumley T (2001) Association between blood pressure level and the risk of myocardial infarction, stroke, and total mortality. Arch Intern Med 161:1183–1192

    Article  CAS  PubMed  Google Scholar 

  33. Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F, Costa B, Scherz R, Bond G, Zanchetti A, on behalf of the ELSA investigators (2001) Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens 19:1981–1989

    Article  CAS  PubMed  Google Scholar 

  34. Johnstone MT, Mittleman M, Tofler G, Muller JE (1996) The pathophysiology of the onset of morning cardiovascular events. Am J Hypertens 9:22S–28S

    Article  CAS  PubMed  Google Scholar 

  35. Chen W, Srinivasan SR, Yao L, Li S, Dasmahapatra P, Fernandez C, Xu J, Berenson GS (2012) Low birth weight is associated with higher blood pressure variability from childhood to young adulthood: the Bogalusa Heart Study. Am J Epidemiol 176(Suppl 7):S99–S105

    Article  PubMed Central  PubMed  Google Scholar 

  36. Parati G, Mancia G (2001) Blood pressure variability as a risk factor. Blood Press Monit 6:341–347

    Article  CAS  PubMed  Google Scholar 

  37. Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Bertinieri G, Grassi G, di Rienzo M, Pedotti A, Zanchetti A (1983) Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res 53:96–104

    Article  CAS  PubMed  Google Scholar 

  38. Burt VL, Whelton P, Ej R, Brown C, Cutler JA, Higgins M, Horan MJ, Labarthe D (1995) Prevalence of hypertension in the US adult population: results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension 25:305–313

    Article  CAS  PubMed  Google Scholar 

  39. Rosner B, Prineas R, Daniels SR, Loggie J (2000) Blood pressure differences between blacks and whites in relation to body size among US children and adolescents. Am J Epidemiol 151:1007–1019

    Article  CAS  PubMed  Google Scholar 

  40. Charkoudian N, Rabbitts JA (2009) Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc 84:822–830

    Article  PubMed Central  PubMed  Google Scholar 

  41. Esler M, Kaye D (2000) Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol 35:S1–S7

    Article  CAS  PubMed  Google Scholar 

  42. Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13:99S–105S

    Article  CAS  PubMed  Google Scholar 

  43. Mancia G, Parati G (2000) Ambulatory blood pressure monitoring and organ damage. Hypertension 36:894–900

    Article  CAS  PubMed  Google Scholar 

  44. Parati G, Di Rienzo M, Ulian L, Santucciu C, Girard A, Elghozi JL, Mancia G (1998) Clinical relevance of blood pressure variability. J Hypertens 16:S25–S33

    CAS  Google Scholar 

  45. Mancia G, Parati G, Di Rienzo M, Zanchetti A (1997) Blood pressure variability. In Zanchetti A, Mancia G (eds) Handbook of hypertension. Pathophysiol Hypertens 17:117-169

  46. Mancia G, Di Rienzo M, Parati G (1993) Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension 21:510–522

    Article  CAS  PubMed  Google Scholar 

  47. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G (1987) Relationship of 24-hour blood pressure mean and variability to severity of target organ damage in hypertension. J Hypertens 5:93–98

    Article  CAS  PubMed  Google Scholar 

  48. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G (1993) Prognostic value of 24-hour blood pressure variability. J Hypertens 11:1133–1137

    Article  CAS  PubMed  Google Scholar 

  49. Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M, Pessina AC (1992) Clinical relevance of night-time blood pressure and of daytime blood pressure variability. Arch Intern Med 152:1855–1860

    Article  CAS  PubMed  Google Scholar 

  50. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G (2003) Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension 42:1106–1111

    Article  CAS  PubMed  Google Scholar 

  51. Cottone S, Panepinto N, Vadalà A, Zagarrigo C, Galione P, Volpe V, Cerasola G (1995) Sympathetic overactivity and 24-hour blood pressure pattern in hypertensives with chronic renal failure. Ren Fail 17:751–758

    Article  CAS  PubMed  Google Scholar 

  52. Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn P (2004) Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int 65:1568–1576

    Article  PubMed  Google Scholar 

  53. Pun PH, Lehrich RW, Smith SR, Middleton JP (2007) Predictors of survival after cardiac arrest in outpatient hemodialysis clinics. Clin J Am Soc Nephrol 2:491–500

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data in this manuscript were collected by the Chronic Kidney Disease in children prospective cohort study (CKiD) with clinical coordinating centers (Principal Investigators) at Children’s Mercy Hospital and the University of Missouri–Kansas City (Bradley Warady, MD) and Children’s Hospital of Philadelphia and the University of Pennsylvania (Susan Furth, MD, Ph.D.), a Central Biochemistry Laboratory at the University of Rochester (George Schwartz, MD), and a data coordinating center at the Johns Hopkins Bloomberg School of Public Health (Alvaro Muñoz, Ph.D.). The CKiD prospective cohort study is funded by the National Institute of Diabetes and Digestive and Kidney Diseases, with additional funding from the National Institute of Neurological Disorders and Stroke, the National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute (UO1-DK-66143, UO1-DK-66174, UO1-DK-082194, UO1-DK-66116). The CKiD website is located at http://www.statepi.jhsph.edu/ckid.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina-Marie Barletta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barletta, GM., Flynn, J., Mitsnefes, M. et al. Heart rate and blood pressure variability in children with chronic kidney disease: a report from the CKiD study. Pediatr Nephrol 29, 1059–1065 (2014). https://doi.org/10.1007/s00467-013-2737-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2737-8

Keywords

Navigation