Pediatric Nephrology

, Volume 29, Issue 6, pp 1097–1102 | Cite as

N-acetyl-cysteine is associated to renal function improvement in patients with nephropathic cystinosis

  • Luciana Pache de Faria Guimaraes
  • Antonio Carlos Seguro
  • Maria Heloisa Mazzola Shimizu
  • Letícia Aparecida Lopes Neri
  • Nairo Massakasu Sumita
  • Ana Carolina de Bragança
  • Rildo Aparecido Volpini
  • Talita Rojas Cunha Sanches
  • Fernanda Andrade Macaferri da Fonseca
  • Carlos Alberto Moreira Filho
  • Maria Helena Vaisbich
Brief Report

Abstract

Background

Nephropathic cystinosis is an autosomal recessive systemic severe disease characterized by intralysosomal cystine storage. Cysteamine is an essential component of treatment. There is solid evidence that cystine accumulation itself is not responsible for all abnormalities in cystinosis; there is also a deficiency of glutathione in the cytosol. Patients with cystinosis can be more susceptible to oxidative stress.

Case-Diagnosis/Treatment

The patient cohort comprised 23 cystinosis patients (16 males) aged <18 years (mean age 8.0 ± 3.6 years) with chronic kidney disease class I–IV with good adherence to treatment, including cysteamine. Oxidative stress was evaluated based on the levels of serum thiobarbituric acid-reactive substances (TBARS), and renal function was evaluated based on serum creatinine and cystatin C levels and creatinine clearance (Schwartz formula). N-Acetylcysteine (NAC), an antioxidant drug was given to all patients for 3 months (T1) at 25 mg/kg/day divided in three doses per day. The measured values at just before the initiation of NAC treatment (T0) served as the control for each patient.

Results

Median serum TBARS levels at T0 and T1 were 6.92 (range 3.3–29.0) and 1.7 (0.6–7.2)  nmol/mL, respectively (p < 0.0001). In terms of renal function at T0 and T1, serum creatinine levels (1.1 ± 0.5 vs. 0.9 ± 0.5 mg/dL, respectively; p < 0.0001), creatinine clearance (69.7 ± 32.2 vs. T1 = 78.5 ± 33.9 mL/min/1.73 m2, respectively; p = 0.006), and cystatin c level (1.33 ± 0.53 vs. 1.15 ± 0.54 mg/l, respectively; p = 0.0057) were all significantly different at these two time points. Serum creatinine measurements at 6 (T −6) and 3 months (T −3) before NAC initiation and at 3 (T +3) and 6 months (T +6) after NAC had been withdrawn were also evaluated.

Conclusion

During the 3-month period that our 23 cystinosis patients were treated with NAC, oxidative stress was reduced and renal function significantly improved. No side-effects were detected. Larger and controlled studies are needed to confirm these findings.

Keywords

Nephropathic cystinosis Oxidative stress Glomerular filtration rate N-Acetylcysteine Cysteamine 

References

  1. 1.
    Gahl WA, Tietze F, Bashan W (1982) Defective cystic exodus from isolated lysosome-rich fractions of cystinotic leukocytes. J Biol Hem 257(16):9570–9575Google Scholar
  2. 2.
    Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP, van't Hoff W, Antignac C (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18(4):319–324PubMedCrossRefGoogle Scholar
  3. 3.
    Vaisbich MH, Koch VH, The Brazilian Cystinosis Study Group (2010) Report of a Brazilian multicenter study on nephropathic cystinosis. Nephron Clin Pract 114:c12–c18PubMedCrossRefGoogle Scholar
  4. 4.
    Brodin-Sartorius A, Tête MJ, Niaudet P, Antignac C, Guest G, Ottolenghi C, Charbit M, Moyse D, Legendre C, Lesavre P, Cochat P, Servais A (2012) Cysteamine therapy delays the progression of nephropathic cystinosis in late adolescents and adults. Kidney Int 81:179–189PubMedCrossRefGoogle Scholar
  5. 5.
    Gahl WA, Balog JZ, Kleta R (2007) Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy. Ann Int Med 147:242–250PubMedCrossRefGoogle Scholar
  6. 6.
    Greco M, Brugnara M, Zaffanello M, Taranta A, Pastore A, Emma F (2010) Long-term outcome of nephropathic cystinosis: a 20-year single-center experience. Pediatr Nephrol 25:2459–2467PubMedCrossRefGoogle Scholar
  7. 7.
    Wilmer MJ, de Graaf-Hess A, Blom HJ, Dijkman HB, Monnens LA, van den Heuvel LP, Levtchenko EN (2005) Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells. Biochem Biophysl Res Commun 337:610–614CrossRefGoogle Scholar
  8. 8.
    Sansanwal P, Yen B, Gahl WA, Ma Y, Ying L, Wong LJ, Sarwal MM (2010) Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol 21:272–283PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wilmer MJ, Emma F, Levtchenko EN (2010) The pathogenesis of cystinosis: mechanisms beyond cystine accumulation. Am J Physiol Renal Physiol 299:F905–F916PubMedCrossRefGoogle Scholar
  10. 10.
    Levtchenko E, de Graaf-Hess A, Wilmer M, van den Heuvel L, Monnens L, Blom H (2005) Altered status of glutathione and its metabolites in cystinotic cells. Nephrol Dial Transplant 20:1828–1832PubMedCrossRefGoogle Scholar
  11. 11.
    Vitvitsky V, Witcher M, Banerjee R, Thoene J (2010) The redox status of cystinotic fibroblasts. Mol Genet Metabol 99:384–388CrossRefGoogle Scholar
  12. 12.
    Vaisbich MH, Guimaraes LPF, Shimizu MHM, Seguro AC (2011) Oxidative stress in cystinosis patients. Nephron Extra 1:73–77PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hanly LN, Chen N, Aleksa K, Cutler M, Bajcetic M, Palassery R, Regueira O, Turner C, Baw B, Malkin B, Freeman D, Rieder MJ, Vasylyeva TL, Koren G (2012) N-acetylcysteine as a novel prophylactic treatment for ifosfamide-induced nephrotoxicity in children: translational pharmacokinetics. J Clin Pharmacol 52(1):55–64PubMedCrossRefGoogle Scholar
  14. 14.
    Duru M, Nacar A, Yönden Z, Kuvandik G, Helvaci MR, Koç A, Akaydin Y, Oksüz H, Söğüt S (2008) Protective effects of N-acetylcysteine on cyclosporine-A-induced nephrotoxicity. Ren Fail 30:453–459PubMedCrossRefGoogle Scholar
  15. 15.
    Luo J, Tsuji T, Yasuda H, Sun Y, Fujigaki Y, Hishida A (2008) The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant 23:2198–2205PubMedCrossRefGoogle Scholar
  16. 16.
    Drager LF, Andrade L, Toledo JFB, Laurindo FRM, Cesar LAM, Seguro AC (2004) Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury. Nephrol Dial Transplant 19:1803–1807PubMedCrossRefGoogle Scholar
  17. 17.
    Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS (2003) National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 111:1416–1421PubMedCrossRefGoogle Scholar
  18. 18.
    Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843PubMedCrossRefGoogle Scholar
  19. 19.
    Shimizu MHM, Coimbra TM, Araujo M, Menezes LF, Seguro AC (2005) N-acetylcysteine attenuates the progression of chronic renal failure. Kidney Int 68:2208–2217PubMedCrossRefGoogle Scholar
  20. 20.
    Danilovic A, Lucon AM, Srougi M, Shimizu MH, Ianhez LE, Nahas WC, Seguro AC (2011) Protective effect of N-acetylcysteine on early outcomes of deceased renal transplantation. Transplant Proc 43(5):1443–1449PubMedCrossRefGoogle Scholar
  21. 21.
    Dohil R, Fidler M, Gangoiti JA, Kaskel F, Schneider JA, Barshop BA (2010) Twice-daily cysteamine bitartrate therapy for children with cystinosis. J Pediatr 156(1):71–75, e3PubMedCrossRefGoogle Scholar
  22. 22.
    Yeagy BA, Harrison F, Gubler MC, Koziol JA, Salomon DR, Cherqui S (2011) Kidney preservation by bone marrow cell transplantation in hereditary nephropathy. Kidney Int 79(11):1198–1206PubMedCrossRefGoogle Scholar
  23. 23.
    Wilmer MJ, Kluijtmans LA, van der Velden TJ, Willems PH, Scheffer PG, Masereeuw R, Monnens LA, van den Heuvel LP, Levtchenko EN (2011) Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells. Biochim Biophys Acta 1812:643–651PubMedCrossRefGoogle Scholar
  24. 24.
    Aruoma OI, Halliwell B, Hoey BM (1989) The antioxidant action of N-acetylcysteine: its action with hydrogen peroxide, hydroxyl radical, superoxide and hipochlorous acid. Free Radic Biol Med 6:593PubMedCrossRefGoogle Scholar
  25. 25.
    Ruiz Fuentes MC, Moreno Ayuso JM, Ruiz Fuentes N, Vargas Palomares JF, Asensio Peinado C, Osuna Ortega A (2008) Treatment with N-acetylcysteine in stable renal transplantation. Transplant Proc 40:2897–2899PubMedCrossRefGoogle Scholar
  26. 26.
    Guimarães LPF, Neri LAL, Sumita NM, Vaisbich MH (2011) Practical markers of renal function among patients with cystinosis. J Bras Nefrol 33(3):1–4Google Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  • Luciana Pache de Faria Guimaraes
    • 1
  • Antonio Carlos Seguro
    • 2
  • Maria Heloisa Mazzola Shimizu
    • 2
  • Letícia Aparecida Lopes Neri
    • 3
  • Nairo Massakasu Sumita
    • 3
  • Ana Carolina de Bragança
    • 2
  • Rildo Aparecido Volpini
    • 2
  • Talita Rojas Cunha Sanches
    • 2
  • Fernanda Andrade Macaferri da Fonseca
    • 4
  • Carlos Alberto Moreira Filho
    • 4
  • Maria Helena Vaisbich
    • 1
    • 5
  1. 1.Pediatric Nephrology Unit, Instituto da Criança, Hospital das Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
  2. 2.Medical Investigation Laboratory 12, Department of Nephrology, Hospital das Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
  3. 3.Central Laboratory, Hospital das Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
  4. 4.Medical Investigation Laboratory 36, Instituto da Criança, Hospital das Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
  5. 5.São PauloBrazil

Personalised recommendations