Abstract
Background
Children with a solitary kidney (SK) have an increased long-term risk of hypertension, albuminuria and glomerulosclerosis. In this study, we assessed the early signs of impaired glomerular filtration in children with a SK from birth or from early infancy.
Methods
Renal growth and function at ages 4–15.5 years were studied in 38 children with SK and 40 matched control subjects in terms of accelerated growth.
Results
The systolic/diastolic blood pressure Z-scores (p = 0.01/<0.05) and the resistance index (RI) of the arcuate arteries (p = 0.05) were higher in the children with SK. Creatinine clearance and 24-h protein and albumin urinary excretion showed no difference. All but seven children with SK had 99mTc diethylene-triamine pentaacetic acid glomerular filtration rate values of >80 ml/min/1.73 m2. An independent positive correlation was found between length of the follow-up time and 24-h albumin urinary excretion (β = 0.54, p < 0.01). Accelerated postnatal growth was positively related with kidney volume (β = 0.35, p < 0.05).
Conclusions
Among our patient cohort, renal function was well preserved at ages 4–15.5 years in children who were born with a SK. However, both their higher blood pressure and RI and the correlation of 24-h albumin urinary excretion with length of follow-up time underline the need for monitoring to detect early signs of glomerular hyperfiltration and, if necessary, implement timely intervention. SK hypertrophy was found to be correlated with postnatal growth.
This is a preview of subscription content, access via your institution.



Abbreviations
- BMI:
-
Body mass index
- BSA:
-
Body surface area
- DBP:
-
Diastolic blood pressure
- DTPA-GFR:
-
Diethylene triamine pentaacetic acid-glomerular filtration rate
- eGFR:
-
Estimated GFR
- RI:
-
Resistance index
- SCr:
-
Serum creatinine
- SBP:
-
Systolic blood pressure
- SGA:
-
Small for gestation age
- SK:
-
Solitary kidney
- VUR:
-
Vesicoureteral reflux
References
Dinkel E, Britscho J, Dittrich M, Schulte-Wissermann H, Ertel M (1988) Renal growth in patients nephrectomized for Wilms tumour as compared to renal agenesis. Eur J Pediatr 147:54–58
Rottenberg GT, De Bruyn R, Gordon I (1996) Sonographic standards for a single functioning kidney in children. AJR Am J Roentgenol 167:1255–1259
John U, Rudnik-Schöneborn S, Zerres K, Misselwitz J (1998) Kidney growth and renal function in unilateral multicystic dysplastic kidney disease. Pediatr Nephrol 12:567–571
Heymans C, Breysem L, Proesmans W (1998) Multicystic kidney dysplasia: a prospective study on the natural history of the affected and the contralateral kidney. Eur J Pediatr 156:673–675
Wilson BE, Davies P, Shah K, Wong W, Taylor CM (2003) Renal growth and inulin clearance in the radiologically normal single kidney. Pediatr Nephrol 18:1147–1151
Wasilewska A, Zoch-Zwierz W, Jadeszko I, Porowski T, Biernacka A, Niewiarowska A, Korzeniecka-Kozerska A (2006) Assessment of serum cystatin C in children with congenital solitary kidney. Pediatr Nephrol 21:688–693
Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241:F85–F93
Shimamura T, Morrison AB (1975) A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am J Pathol 79:95–106
Okuda S, Motomura K, Sanai T, Onoyama K, Fujishima M (1988) High incidence of glomerular sclerosis in rats subjected to uninephrectomy at young age. Nephron 49:240–244
Hedge S, Coulthard MG (2009) Renal agenesis and unilateral nephrectomy: what are the risks of living with a single kidney? Pediatr Nephrol 24:439–446
Robitaille P, Mongeau JG, Lortie L, Sinnassamy P (1985) Long-term follow-up of patients who underwent unilateral nephrectomy in childhood. Lancet 1:1297–1299
Wikstad I, Pettersson BA, Elinder G, Sökücü S, Aperia A (1986) A comparative study of size and function of the remnant kidney in patients nephrectomized in childhood for Wilms’ tumor and hydronephrosis. Acta Paediatr Scand 75:408–414
Regazzoni BM, Genton N, Pelet J, Drukker A, Guignard JP (1998) Long-term followup of renal functional reserve capacity after unilateral nephrectomy in childhood. J Urol 160:844–848
Hedge S, Coulthard MG (2007) Follow-up of early unilateral nephrectomy for hypertension. Arch Dis Child Fetal Neonatal Ed 92:F305–F306
Oldrizzi L, Rugiu C, De Biase V, Maschio G (1991) The solitary kidney: a risky situation for progressive renal damage? Am J Kidney Dis 17:57–61
Argueso LR, Ritchey ML, Boyle ET Jr, Milliner DS, Bergstralh EJ, Kramer SA (1992) Prognosis of patients with unilateral renal agenesis. Pediatr Nephrol 6:412–416
Argueso LR, Ritchey ML, Boyle ET Jr, Milliner DS, Bergstralh EJ, Kramer SA (1992) Prognosis of children with solitary kidney after unilateral nephrectomy. J Urol 148:747–751
Baudoin P, Provoost AP, Molenaar JC (1993) Renal function up to 50 years after unilateral nephrectomy in childhood. Am J Kidney Dis 21:603–611
Abou Jaoudé P, Dubourg L, Bacchetta J, Berthiller J, Ranchin B, Cochat P (2011) Congenital versus acquired solitary kidney: is the difference relevant? Neprhol Dial Transplant 26:2188–2194
Westland R, Schreuder MF, Bökenkamp A, Spreeuwenberg MD, van Wijk JA (2011) Renal injury in children with a solitary functioning kidney-the KIMONO study. Nephrol Dial Transplant 26:1533–1541
Westland R, Kurvers RA, van Wijk JA, Schreuder MF (2013) Risk factors for renal injury in children with a solitary functioning kidney. Pediatrics 131:e478–e485
Schreuder MF, Langemeijer ME, Bökenkamp A, Delemarre-Van de Waal HA, Van Wijk JA (2008) Hypertension and microalbuminuria in children with congenital solitary kidneys. J Paediatr Child Health 44:363–368
Dinkel E, Ertel M, Dittrich M, Peters H, Berres M, Schulte-Wissermann H (1985) Kidney size in childhood: sonographical growth charts for kidney length and volume. Pediatr Radiol 15:38–43
Han BK, Babcock DS (1985) Sonographic measurements and appearance of normal kidneys in children. AJR Am J Roentgenol 145:611–616
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114[2 Suppl 4th Report]:555–576
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637
Chiotis D, Krikos X, Tsiftsis G, Hatzisymeon M, Dacou-Voutetakis C (2004) Body mass index and prevalence of obesity in subjects of Hellenic origin aged 0–18 years, living in the Athens area. Ann Clin Pediatr Univ Athen 51:139–154
Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179
Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M, Mahoney L, McCrindle B, Mietus-Snyder M, Steinberger J, Daniels S, American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee (2008) Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the council on cardiovascular disease in the young and the council for high blood pressure research. Hypertension 52:433–451
Glazebrook KN, McGrath FP, Steele BT (1993) Prenatal compensatory renal growth: documentation with US. Radiology 189:733–735
Kuzmić AC, Brkljacić B, Ivanković D, Galesić K (2000) Doppler sonographic renal resistance index in healthy children. Eur Radiol 10:1644–1648
Quarto di Palo F, Rivolta R, Elli A, Castagnone D (1996) Relevance of resistive index ultrasonographic measurement in renal transplantation. Nephron 73:195–200
Shokeir AA, Abubieh EA, Dawaba M, el-Azab M (2003) Resistive index of the solitary kidney: a clinical study of normal values. J Urol 170:377–379
Nekouei S, Ahmadnia H, Abedi M, Alamolhodaee MH, Abedi MS (2012) Resistive index of the remaining kidney in allograft kidney donors. Exp Clin Transplant 10:454–457
Wasilewska A, Zoch-Zwierz W, Michalak K (2005) Assessment of 24-hour blood pressure function of the single kidney in children with renal agenesis. Pol Merkur Lekarski 18:164–167
Mei-Zahav M, Korzets Z, Cohen I, Kessler O, Rathaus V, Wolach B, Pomeranz A (2001) Ambulatory blood pressure monitoring in children with a solitary kidney-a comparison between unilateral renal agenesis and uninephrectomy. Blood Press Monit 6:263–267
Rogol AD, Roemmich JN, Clark PA (2002) Growth at puberty. J Adolesc Health 31:192–200
Westland R, Abraham Y, Bökenkamp A, Stoffel-Wagner B, Schreuder MF, van Wijk JA (2013) Precision of estimating equations for GFR in children with a solitary functioning kidney: the KIMONO study. Clin J Am Soc Nephrol 8:764–772
Itoh K (2003) Comparison of methods for determination of glomerular filtration rate: Tc-99m-DTPA renography, predicted creatinine clearance method and plasma sample method. Ann Nucl Med 17:561–565
Drougia A, Giapros V, Hotoura E, Papadopoulou F, Argyropoulou M, Andronikou S (2009) The effects of gestational age and growth restriction on compensatory kidney growth. Nephrol Dial Transplant 24:142–148
Ardissino G, Testa S, Daccò V, Paglialonga F, Viganò S, Felice-Civitillo C, Battaglino F, Bettinelli A, Bordugo A, Cecchetti V, De Pascale S, La Manna A, Li Volti S, Maringhini S, Montini G, Pennesi M, Peratoner L (2012) Puberty is associated with increased deterioration of renal function in patients with CKD: data from the ItalKid Project. Arch Dis Child 97:885–888
Westland R, Schreuder MF, Ket JC, van Wijk JA (2013) Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol Dial Transplant 28:1844–1855
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Siomou, E., Giapros, V., Papadopoulou, F. et al. Growth and function in childhood of a normal solitary kidney from birth or from early infancy. Pediatr Nephrol 29, 249–256 (2014). https://doi.org/10.1007/s00467-013-2623-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00467-013-2623-4