Skip to main content

Advertisement

Log in

Building an atlas of gene expression driving kidney development: pushing the limits of resolution

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Changing gene expression patterns is the essential driver of developmental processes. Growth factors, micro-RNAs, long intergenic noncoding RNAs, and epigenetic marks, such as DNA methylation and histone modifications, all work by impacting gene expression. The key features of developing cells, including their ability to communicate with others, are defined primarily by their gene-expression profiles. It is therefore clear that a gene-expression atlas of the developing kidney can provide a useful tool for the developmental nephrology research community. Toward this end, the GenitoUrinary Development Molecular Anatomy Project (GUDMAP) consortium has worked to create an atlas of the changing gene-expression patterns that drive kidney development. In this article, the global gene-expression profiling strategies of GUDMAP are reviewed. The initial work used laser-capture microdissection to purify multiple compartments of the developing kidney, including cap mesenchyme, renal vesicle, S-shaped bodies, proximal tubules, and more, which were then gene-expression profiled using microarrays. Resolution of the atlas was then improved by using transgenic mice with specific cell types labeled with green fluorescent protein (GFP), allowing their purification and profiling. In addition, RNA-Seq replaced microarrays. Currently, the atlas is being pushed to the single-cell resolution using microfluidic approaches that allow high-throughput RNA-Seq analysis of hundreds of individual cells. Results can identify novel types of cells and define interesting heterogeneities present within cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CM:

Cap mesenchyme

FACS:

Fluorescent-activated cell sorting

GFP:

Green fluorescent protein

GBM:

Glomerular basement membrane

GUDMAP:

GenitoUrinary Development Molecular Anatomy Project

LCM:

Laser-capture microdissection

MM:

Metanephric mesenchyme

RV:

Renal vesicle

UB:

Ureteric bud

References

  1. Stuart RO, Bush KT, Nigam SK (2001) Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A 98:5649–5654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS (2003) A catalogue of gene expression in the developing kidney. Kidney Int 64:1588–1604

    Article  CAS  PubMed  Google Scholar 

  3. Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM (2005) Temporal and spatial transcriptional programs in murine kidney development. Physiol Genom 23:159–171

    Article  CAS  Google Scholar 

  4. Schwab K, Hartman HA, Liang HC, Aronow BJ, Patterson LT, Potter SS (2006) Comprehensive microarray analysis of Hoxa11/Hoxd11 mutant kidney development. Dev Biol 293:540–554

    Article  CAS  PubMed  Google Scholar 

  5. Stuart RO, Bush KT, Nigam SK (2003) Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney Int 64:1997–2008

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt-Ott KM, Masckauchan TN, Chen X, Hirsh BJ, Sarkar A, Yang J, Paragas N, Wallace VA, Dufort D, Pavlidis P, Jagla B, Kitajewski J, Barasch J (2007) beta-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development 134:3177–3190

    Article  CAS  PubMed  Google Scholar 

  7. Takasato M, Osafune K, Matsumoto Y, Kataoka Y, Yoshida N, Meguro H, Aburatani H, Asashima M, Nishinakamura R (2004) Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice. Mech Dev 121:547–557

    Article  CAS  PubMed  Google Scholar 

  8. McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, Grimmond S, Lessard JL, Little MH, Potter SS, Wilder EL, Zhang P, project G (2008) GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol 19:667–671

    Article  PubMed  Google Scholar 

  9. Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, Houghton D, Lloyd-MacGilp S, Pi X, Roochun Y, Sharghi M, Tindal C, McMahon AP, Gottesman B, Little MH, Georgas K, Aronow BJ, Potter SS, Brunskill EW, Southard-Smith EM, Mendelsohn C, Baldock RA, Davies JA, Davidson D (2011) The GUDMAP database–an online resource for genitourinary research. Development 138:2845–2853

    Article  CAS  PubMed  Google Scholar 

  10. Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Yu J, Grimmond S, McMahon AP, Patterson LT, Little MH, Potter SS (2008) Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 15:781–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB, Miner JH, Roopenian DC, Unanue ER, Shaw AS (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci U S A 105:967–972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dijkman H, Smeets B, van der Laak J, Steenbergen E, Wetzels J (2005) The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int 68:1562–1572

    Article  PubMed  Google Scholar 

  14. Li JJ, Kwak SJ, Jung DS, Kim JJ, Yoo TH, Ryu DR, Han SH, Choi HY, Lee JE, Moon SJ, Kim DK, Han DS, Kang SW (2007) Podocyte biology in diabetic nephropathy. Kidney Int Suppl (106):S36–S42

    Article  Google Scholar 

  15. Mundel P, Reiser J, Zuniga Mejia Borja A, Pavenstadt H, Davidson GR, Kriz W, Zeller R (1997) Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Exp Cell Res 236:248–258

    Article  CAS  PubMed  Google Scholar 

  16. Shankland SJ, Pippin JW, Reiser J, Mundel P (2007) Podocytes in culture: past, present, and future. Kidney Int 72:26–36

    Article  CAS  PubMed  Google Scholar 

  17. Han SH, Yang S, Jung DS, Li JJ, Kim JJ, Kwak SJ, Kim DK, Moon SJ, Lee JE, Han DS, Kang SW (2008) Gene expression patterns in glucose-stimulated podocytes. Biochem Biophys Res Commun 370:514–518

    Article  CAS  PubMed  Google Scholar 

  18. Endlich N, Sunohara M, Nietfeld W, Wolski EW, Schiwek D, Kranzlin B, Gretz N, Kriz W, Eickhoff H, Endlich K (2002) Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J 16:1850–1852

    CAS  PubMed  Google Scholar 

  19. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    CAS  PubMed  Google Scholar 

  20. Brunskill EW, Georgas K, Rumballe B, Little MH, Potter SS (2011) Defining the molecular character of the developing and adult kidney podocyte. PLoS One 6:e24640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. White JT, Zhang B, Cerqueira DM, Tran U, Wessely O (2010) Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 137:1863–1873

    Article  CAS  PubMed  Google Scholar 

  22. Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later. Nephrology 15:20–22

    Article  PubMed  Google Scholar 

  23. Kobayashi T, Uehara S, Ikeda T, Itadani H, Kotani H (2003) Vitamin D3 up-regulated protein-1 regulates collagen expression in mesangial cells. Kidney Int 64:1632–1642

    Article  CAS  PubMed  Google Scholar 

  24. Hishikawa K, Oemar BS, Nakaki T (2001) Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem 276:16797–16803

    Article  CAS  PubMed  Google Scholar 

  25. Mishra R, Leahy P, Simonson MS (2002) Gene expression profiling reveals role for EGF-family ligands in mesangial cell proliferation. Am J Physiol Renal Physiol 283:F1151–F1159

    PubMed  Google Scholar 

  26. Yoshimura H, Sakai T, Kuwahara Y, Ito M, Tsuritani K, Hirasawa Y, Nagamatsu T (2009) Effects of kynurenine metabolites on mesangial cell proliferation and gene expression. Exp Mol Pathol 87:70–75

    Article  CAS  PubMed  Google Scholar 

  27. Simonson MS, Ismail-Beigi F (2011) Endothelin-1 increases collagen accumulation in renal mesangial cells by stimulating a chemokine and cytokine autocrine signaling loop. J Biol Chem 286:11003–11008

    Article  CAS  PubMed  Google Scholar 

  28. Sadlier DM, Ouyang X, McMahon B, Mu W, Ohashi R, Rodgers K, Murray D, Nakagawa T, Godson C, Doran P, Brady HR, Johnson RJ (2005) Microarray and bioinformatic detection of novel and established genes expressed in experimental anti-Thy1 nephritis. Kidney Int 68:2542–2561

    Article  CAS  PubMed  Google Scholar 

  29. Brunskill EW, Potter SS (2012) Changes in the gene expression programs of renal mesangial cells during diabetic nephropathy. BMC Nephrol 13:70

    Article  PubMed Central  PubMed  Google Scholar 

  30. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N (1998) Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93:1159–1170

    Article  CAS  PubMed  Google Scholar 

  31. Mohan RR, Gupta R, Mehan MK, Cowden JW, Sinha S (2010) Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts. Exp Eye Res 91:238–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Williams KJ, Qiu G, Usui HK, Dunn SR, McCue P, Bottinger E, Iozzo RV, Sharma K (2007) Decorin deficiency enhances progressive nephropathy in diabetic mice. Am J Path 171:1441–1450

    Article  CAS  PubMed  Google Scholar 

  33. Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333:312–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332:273–286

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132:2809–2823

    Article  CAS  PubMed  Google Scholar 

  36. Nakai S, Sugitani Y, Sato H, Ito S, Miura Y, Ogawa M, Nishi M, Jishage K, Minowa O, Noda T (2003) Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development 130:4751–4759

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Brunskill EW, Potter SS (2012) RNA-Seq defines novel genes, RNA processing patterns and enhancer maps for the early stages of nephrogenesis: Hox supergenes. Dev Biol 368:4–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375:791–795

    Article  CAS  PubMed  Google Scholar 

  42. Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432

    Article  CAS  PubMed  Google Scholar 

  43. Yallowitz AR, Hrycaj SM, Short KM, Smyth IM, Wellik DM (2011) Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS One 6:e23410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, Ueda HR (2013) Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biol 14:R31

    Article  PubMed  Google Scholar 

  45. Brunskill EW, Sequeira-Lopez ML, Pentz ES, Lin E, Yu J, Aronow BJ, Potter SS, Gomez RA (2011) Genes that confer the identity of the renin cell. J Am Soc Nephrol 22:2213–2225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Potter lab, including Mike Adam, Anna Raines, Bliss Magella, and Andrew Potter, for thoughtful discussions. This work was supported by 1RC4DK090891 from the National institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Steven Potter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, S.S., Brunskill, E.W. Building an atlas of gene expression driving kidney development: pushing the limits of resolution. Pediatr Nephrol 29, 581–588 (2014). https://doi.org/10.1007/s00467-013-2602-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2602-9

Keywords

Navigation