Pediatric Nephrology

, Volume 29, Issue 4, pp 565–574 | Cite as

MicroRNAs: potential regulators of renal development genes that contribute to CAKUT



Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of childhood chronic kidney disease (CKD). While mutations in several renal development genes have been identified as causes for CAKUT, most cases have not yet been linked to known mutations. Furthermore, the genotype–phenotype correlation is variable, suggesting that there might be additional factors that have an impact on the severity of CAKUT. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level, and are involved in many developmental processes. Although little is known about the function of specific miRNAs in kidney development, several have recently been shown to regulate the expression of, and/or are regulated by, crucial renal development genes present in other organ systems. In this review, we discuss how miRNA regulation of common developmental signaling pathways may be applicable to renal development. We focus on genes that are known to contribute to CAKUT in humans, for which miRNA interactions in other contexts have been identified, with miRNAs that are present in the kidney. We hypothesize that miRNA-mediated processes might play a role in kidney development through similar mechanisms, and speculate that genotypic variations in these small RNAs or their targets could be associated with CAKUT.


MicroRNAs Kidney development Congenital anomalies Renal disease Epigenetics 


  1. 1.
    Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA (2007) Contributions of the Transplant Registry: The 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant 11:366–373PubMedGoogle Scholar
  2. 2.
    Saxen L, Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol 1:385–392PubMedGoogle Scholar
  3. 3.
    Piscione TD, Rosenblum ND (2002) The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation 70:227–246PubMedGoogle Scholar
  4. 4.
    Aufderheide E, Chiquet-Ehrismann R, Ekblom P (1987) Epithelial-mesenchymal interactions in the developing kidney lead to expression of tenascin in the mesenchyme. J Cell Biol 105:599–608PubMedGoogle Scholar
  5. 5.
    Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, Innocenti ML, Somenzi D, Trivelli A, Caridi G, Izzi C, Scolari F, Mattioli G, Allegri L, Ghiggeri GM (2009) Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 76:528–533PubMedGoogle Scholar
  6. 6.
    Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108PubMedGoogle Scholar
  7. 7.
    Yosypiv IV (2012) Congenital anomalies of the kidney and urinary tract: a genetic disorder? Int J Nephrol. doi:10.1155/2012/909083
  8. 8.
    Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373PubMedCentralPubMedGoogle Scholar
  9. 9.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCentralPubMedGoogle Scholar
  10. 10.
    Patel V, Hajarnis S, Williams D, Hunter R, Huynh D, Igarashi P (2012) MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol 23:1941–1948PubMedGoogle Scholar
  11. 11.
    Sequeira-Lopez ML, Weatherford ET, Borges GR, Monteagudo MC, Pentz ES, Harfe BD, Carretero O, Sigmund CD, Gomez RA (2010) The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol 21:460–467PubMedGoogle Scholar
  12. 12.
    Ho J, Pandey P, Schatton T, Sims-Lucas S, Khalid M, Frank MH, Hartwig S, Kreidberg JA (2011) The pro-apoptotic protein Bim is a microRNA target in kidney progenitors. J Am Soc Nephrol 22:1053–1063PubMedGoogle Scholar
  13. 13.
    Nagalakshmi VK, Ren Q, Pugh MM, Valerius MT, McMahon AP, Yu J (2011) Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 79:317–330PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA (2008) Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 19:2069–2075PubMedGoogle Scholar
  15. 15.
    Bartram MP, Hohne M, Dafinger C, Volker LA, Albersmeyer M, Heiss J, Gobel H, Bronneke H, Burst V, Liebau MC, Benzing T, Schermer B, Muller RU (2013) Conditional loss of kidney microRNAs results in congenital anomalies of the kidney and urinary tract (CAKUT). J Mol Med (Berl) 91:739–748Google Scholar
  16. 16.
    Ho JJ, Marsden PA (2008) Dicer cuts the kidney. J Am Soc Nephrol 19:2043–2046PubMedGoogle Scholar
  17. 17.
    Kato M, Park JT, Natarajan R (2012) MicroRNAs and the glomerulus. Exp Cell Res 318:993–1000PubMedCentralPubMedGoogle Scholar
  18. 18.
    Ho J, Kreidberg JA (2012) MicroRNAs in renal development. Pediatr Nephrol 28:219–225PubMedCentralPubMedGoogle Scholar
  19. 19.
    Thiagarajan RD, Cloonan N, Gardiner BB, Mercer TR, Kolle G, Nourbakhsh E, Wani S, Tang D, Krishnan K, Georgas KM, Rumballe BA, Chiu HS, Steen JA, Mattick JS, Little MH, Grimmond SM (2011) Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling. BMC Genomics 12:441PubMedCentralPubMedGoogle Scholar
  20. 20.
    Sanyanusin P, McNoe LA, Sullivan MJ, Weaver RG, Eccles MR (1995) Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum Mol Genet 4:2183–2184PubMedGoogle Scholar
  21. 21.
    Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364PubMedGoogle Scholar
  22. 22.
    Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMedGoogle Scholar
  23. 23.
    Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiene A, Mir S, Montini G, Peco-Antic A, Wuhl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870PubMedGoogle Scholar
  24. 24.
    Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Williams-Simons L, Westphal H (1993) Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 362:65–67PubMedGoogle Scholar
  25. 25.
    Zhang SL, Chen YW, Tran S, Liu F, Nestoridi E, Hebert MJ, Ingelfinger JR (2007) Pax-2 and N-myc regulate epithelial cell proliferation and apoptosis in a positive autocrine feedback loop. Pediatr Nephrol 22:813–824PubMedGoogle Scholar
  26. 26.
    Bates CM, Kharzai S, Erwin T, Rossant J, Parada LF (2000) Role of N-myc in the developing mouse kidney. Dev Biol 222:317–325PubMedGoogle Scholar
  27. 27.
    Northcott PA, Fernandez LA, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y, Grundy R, Van Meter T, Rutka JT, Croce CM, Kenney AM, Taylor MD (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69:3249–3255PubMedCentralPubMedGoogle Scholar
  28. 28.
    De Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, Genevieve D, Goldenberg A, Oufadem M, Manouvrier S, Munnich A, Vidigal JA, Vekemans M, Lyonnet S, Henrion-Caude A, Ventura A, Amiel J (2011) Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet 43:1026–1030PubMedCentralPubMedGoogle Scholar
  29. 29.
    Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886PubMedCentralPubMedGoogle Scholar
  30. 30.
    Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453PubMedCentralPubMedGoogle Scholar
  31. 31.
    Yin R, Bao W, Xing Y, Xi T, Gou S (2012) MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression of endothelial cells. Biochem Biophys Res Commun 417:771–776PubMedGoogle Scholar
  32. 32.
    Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR, Kolle G, Gabrielli B, Grimmond SM (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9:R127PubMedCentralPubMedGoogle Scholar
  33. 33.
    Kort EJ, Farber L, Tretiakova M, Petillo D, Furge KA, Yang XJ, Cornelius A, Teh BT (2008) The E2F3-Oncomir-1 axis is activated in Wilms tumor. Cancer Res 68:4034–4038PubMedCentralPubMedGoogle Scholar
  34. 34.
    Brodeur GM (1995) Genetics of embryonal tumours of childhood: retinoblastoma, Wilms tumour and neuroblastoma. Cancer Surv 25:67–99PubMedGoogle Scholar
  35. 35.
    Ariyaratana S, Loeb DM (2007) The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med 9:1–17PubMedGoogle Scholar
  36. 36.
    Marcelis CL, Hol FA, Graham GE, Rieu PN, Kellermayer R, Meijer RP, Lugtenberg D, Scheffer H, van Bokhoven H, Brunner HG, de Brouwer AP (2008) Genotype-phenotype correlations in MYCN-related Feingold syndrome. Hum Mutat 29:1125–1132PubMedGoogle Scholar
  37. 37.
    Aslam M, van Bokhoven H, Taylor CM (2008) End-stage renal failure, reflux nephropathy and Feingold's syndrome. Pediatr Nephrol 23:159–161PubMedGoogle Scholar
  38. 38.
    Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S, Igarashi P (2013) miR-17 92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 110:10765–10770PubMedCentralPubMedGoogle Scholar
  39. 39.
    Sun H, Li QW, Lv XY, Ai JZ, Yang QT, Duan JJ, Bian GH, Xiao Y, Wang YD, Zhang Z, Liu YH, Tan RZ, Yang Y, Wei YQ, Zhou Q (2010) MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol Biol Rep 37:2951–2958PubMedGoogle Scholar
  40. 40.
    Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137:1107–1116PubMedGoogle Scholar
  41. 41.
    Giglio S, Contini E, Toni S, Pela I (2010) Growth hormone therapy-related hyperglycaemia in a boy with renal cystic hypodysplasia and a new mutation of the HNF1 beta gene. Nephrol Dial Transplant 25:3116–3119PubMedGoogle Scholar
  42. 42.
    Kornfeld JW, Baitzel C, Konner AC, Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM, Knippschild U, Seibler J, Cereghini S, Heeren J, Stoffel M, Bruning JC (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115PubMedGoogle Scholar
  43. 43.
    Lin DH, Yue P, Pan C, Sun P, Wang WH (2011) MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J Am Soc Nephrol 22:1087–1098PubMedGoogle Scholar
  44. 44.
    Reichert N, Choukrallah MA, Matthias P (2012) Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci 69:2173–2187PubMedGoogle Scholar
  45. 45.
    Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, Bachvarov D, El-Dahr SS (2011) Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem 286:32775–32789PubMedGoogle Scholar
  46. 46.
    Delcuve GP, Khan DH, Davie JR (2012) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics 4:5PubMedCentralPubMedGoogle Scholar
  47. 47.
    Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281PubMedGoogle Scholar
  48. 48.
    De Groh ED, Swanhart LM, Cosentino CC, Jackson RL, Dai W, Kitchens CA, Day BW, Smithgall TE, Hukriede NA (2010) Inhibition of histone deacetylase expands the renal progenitor cell population. J Am Soc Nephrol 21:794–802PubMedGoogle Scholar
  49. 49.
    Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, de Caestecker MP, Hukriede NA (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953PubMedGoogle Scholar
  50. 50.
    Mannaerts I, Eysackers N, Onyema OO, Van Beneden K, Valente S, Mai A, Odenthal M, van Grunsven LA (2013) Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29. PLoS One 8:e55786PubMedCentralPubMedGoogle Scholar
  51. 51.
    Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB, Michael MZ (2013) Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog 52:459–474PubMedGoogle Scholar
  52. 52.
    Shah YM, Morimura K, Yang Q, Tanabe T, Takagi M, Gonzalez FJ (2007) Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 27:4238–4247PubMedCentralPubMedGoogle Scholar
  53. 53.
    O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843PubMedGoogle Scholar
  54. 54.
    Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50PubMedCentralPubMedGoogle Scholar
  55. 55.
    Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, Houghton D, Lloyd-MacGilp S, Pi X, Roochun Y, Sharghi M, Tindal C, McMahon AP, Gottesman B, Little MH, Georgas K, Aronow BJ, Potter SS, Brunskill EW, Southard-Smith EM, Mendelsohn C, Baldock RA, Davies JA, Davidson D (2011) The GUDMAP database–an online resource for genitourinary research. Development 138:2845–2853PubMedGoogle Scholar
  56. 56.
    McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, Grimmond S, Lessard JL, Little MH, Potter SS, Wilder EL, Zhang P (2008) GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol 19:667–671PubMedGoogle Scholar
  57. 57.
    Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, Gajda MR, Junker K (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 29:367–373PubMedGoogle Scholar
  58. 58.
    Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873PubMedCentralPubMedGoogle Scholar
  59. 59.
    Tabatabaeifar M, Schlingmann KP, Litwin M, Emre S, Bakkaloglu A, Mehls O, Antignac C, Schaefer F, Weber S (2009) Functional analysis of BMP4 mutations identified in pediatric CAKUT patients. Pediatr Nephrol 24:2361–2368PubMedGoogle Scholar
  60. 60.
    Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61PubMedCentralPubMedGoogle Scholar
  61. 61.
    Kang H, Davis-Dusenbery BN, Nguyen PH, Lal A, Lieberman J, Van Aelst L, Lagna G, Hata A (2011) Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 287:3976–3986PubMedGoogle Scholar
  62. 62.
    Ahmed MI, Mardaryev AN, Lewis CJ, Sharov AA, Botchkareva NV (2011) MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes. J Cell Sci 124:3399–3404PubMedGoogle Scholar
  63. 63.
    Wang J, Gao Y, Ma M, Li M, Zou D, Yang J, Zhu Z, Zhao X (2013) Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys DOI:. doi:10.1007/s12013-013-9539-2 Google Scholar
  64. 64.
    Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, Li G, Wang H, Lu G, Hu X, Jiang S, Li JN, Lin MC, Zhang YO, Kung HF (2011) MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 8:829–838PubMedGoogle Scholar
  65. 65.
    Wang J, Greene SB, Bonilla-Claudio M, Tao Y, Zhang J, Bai Y, Huang Z, Black BL, Wang F, Martin JF (2010) Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell 19:903–912PubMedCentralPubMedGoogle Scholar
  66. 66.
    Kang H, Louie J, Weisman A, Sheu-Gruttadauria J, Davis-Dusenbery BN, Lagna G, Hata A (2012) Inhibition of microRNA-302 (miR-302) by bone morphogenetic protein 4 (BMP4) facilitates the BMP signaling pathway. J Biol Chem 287:38656–38664PubMedGoogle Scholar
  67. 67.
    Faherty N, Curran SP, O'Donovan H, Martin F, Godson C, Brazil DP, Crean JK (2012) CCN2/CTGF increases expression of miR-302 microRNAs, which target the TGFbeta type II receptor with implications for nephropathic cell phenotypes. J Cell Sci 125:5621–5629PubMedGoogle Scholar
  68. 68.
    Parisi S, Battista M, Musto A, Navarra A, Tarantino C, Russo T (2012) A regulatory loop involving Dies1 and miR-125a controls BMP4 signaling in mouse embryonic stem cells. FASEB J 26:3957–3968PubMedGoogle Scholar
  69. 69.
    Piazzon N, Maisonneuve C, Guilleret I, Rotman S, Constam DB (2012) Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing. J Mol Cell Biol 4:398–408PubMedGoogle Scholar
  70. 70.
    Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R (2011) A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int 80:358–368PubMedCentralPubMedGoogle Scholar
  71. 71.
    Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104:3432–3437PubMedCentralPubMedGoogle Scholar
  72. 72.
    Kato M, Dang V, Wang M, Park JT, Deshpande S, Kadam S, Mardiros A, Zhan Y, Oettgen P, Putta S, Yuan H, Lanting L, Natarajan R (2013) TGF-beta Induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal 6:ra43PubMedGoogle Scholar
  73. 73.
    Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21:438–447PubMedGoogle Scholar
  74. 74.
    Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN (2009) MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 23:2166–2178PubMedGoogle Scholar
  75. 75.
    Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A (2011) down-regulation of Krüppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 286:28097–28110PubMedGoogle Scholar
  76. 76.
    Song B, Niclis JC, Alikhan MA, Sakkal S, Sylvain A, Kerr PG, Laslett AL, Bernard CA, Ricardo SD (2011) Generation of induced pluripotent stem cells from human kidney mesangial cells. J Am Soc Nephrol 22:1213–1220PubMedGoogle Scholar
  77. 77.
    Boersema M, Katta K, Rienstra H, Molema G, Nguyen TQ, Goldschmeding R, Navis G, van den Born J, Popa ER, Hillebrands JL (2012) Local medial microenvironment directs phenotypic modulation of smooth muscle cells after experimental renal transplantation. Am J Transplant 12:1429–1440PubMedGoogle Scholar
  78. 78.
    van Baal JW, Verbeek RE, Bus P, Fassan M, Souza RF, Rugge M, Ten Kate FJ, Vleggaar FP, Siersema PD (2013) microRNA-145 in Barrett's oesophagus: regulating BMP4 signalling via GATA6. Gut 62:664–675PubMedGoogle Scholar
  79. 79.
    Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumae U (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789PubMedGoogle Scholar
  80. 80.
    Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351PubMedCentralPubMedGoogle Scholar
  81. 81.
    Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27:7661–7668PubMedCentralPubMedGoogle Scholar
  82. 82.
    Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Weil D, Cruaud C, Sahly I, Leibovici M, Bitner-Glindzicz M, Francis M, Lacombe D, Vigneron J, Charachon R, Boven K, Bedbeder P, Van Regemorter N, Weissenbach J, Petit C (1997) A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164PubMedGoogle Scholar
  83. 83.
    Vincent C, Kalatzis V, Abdelhak S, Chaib H, Compain S, Helias J, Vaneecloo FM, Petit C (1997) BOR and BO syndromes are allelic defects of EYA1. Eur J Hum Genet 5:242–246PubMedGoogle Scholar
  84. 84.
    Drake KM, Ruteshouser EC, Natrajan R, Harbor P, Wegert J, Gessler M, Pritchard-Jones K, Grundy P, Dome J, Huff V, Jones C, Aldred MA (2009) Loss of heterozygosity at 2q37 in sporadic Wilms tumor: putative role for miR-562. Clin Cancer Res 15:5985–5992PubMedCentralPubMedGoogle Scholar
  85. 85.
    Yoong LF, Wan G, Too HP (2006) Glial cell-line derived neurotrophic factor and neurturin regulate the expressions of distinct miRNA precursors through the activation of GFRalpha2. J Neurochem 98:1149–1158PubMedGoogle Scholar
  86. 86.
    Wan G, Lim QE, Too HP (2010) High-performance quantification of mature microRNAs by real-time RT-PCR using deoxyuridine-incorporated oligonucleotides and hemi-nested primers. RNA 16:1436–1445PubMedGoogle Scholar
  87. 87.
    Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, Tatarano S, Yonezawa T, Kinoshita T, Nakagawa M, Enokida H (2013) microRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol 190:1059–1068PubMedGoogle Scholar
  88. 88.
    Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kochhar A, Orten DJ, Sorensen JL, Fischer SM, Cremers CW, Kimberling WJ, Smith RJ (2008) SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum Mutat 29:565PubMedGoogle Scholar
  90. 90.
    Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, Kumar S, Neuhaus TJ, Kemper MJ, Raymond RM Jr, Brophy PD, Berkman J, Gattas M, Hyland V, Ruf EM, Schwartz C, Chang EH, Smith RJ, Stratakis CA, Weil D, Petit C, Hildebrandt F (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A 101:8090–8095PubMedCentralPubMedGoogle Scholar
  91. 91.
    Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, Ford HL (2012) The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31:5162–5171PubMedCentralPubMedGoogle Scholar
  92. 92.
    Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y, Rao MK (2010) MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 29:4971–4979PubMedGoogle Scholar
  93. 93.
    Liao JM, Lu H (2011) Autoregulatory suppression of c-Myc by miR-185-3p. J Biol Chem 286:33901–33909PubMedGoogle Scholar
  94. 94.
    Katoh M (2002) Molecular cloning and characterization of human SOX17. Int J Mol Med 9:153–157PubMedGoogle Scholar
  95. 95.
    Gimelli S, Caridi G, Beri S, McCracken K, Bocciardi R, Zordan P, Dagnino M, Fiorio P, Murer L, Benetti E, Zuffardi O, Giorda R, Wells JM, Gimelli G, Ghiggeri GM (2010) Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum Mutat 31:1352–1359PubMedCentralPubMedGoogle Scholar
  96. 96.
    Jia Y, Yang Y, Liu S, Herman JG, Lu F, Guo M (2010) SOX17 antagonizes WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Epigenetics 5:743–749PubMedGoogle Scholar
  97. 97.
    Chen HL, Chew LJ, Packer RJ, Gallo V (2013) Modulation of the Wnt/beta-catenin pathway in human oligodendroglioma cells by Sox17 regulates proliferation and differentiation. Cancer Lett 335:361–371PubMedGoogle Scholar
  98. 98.
    Yin D, Jia Y, Yu Y, Brock MV, Herman JG, Han C, Su X, Liu Y, Guo M (2012) SOX17 methylation inhibits its antagonism of Wnt signaling pathway in lung cancer. Discov Med 14:33–40PubMedGoogle Scholar
  99. 99.
    Zhang W, Glockner SC, Guo M, Machida EO, Wang DH, Easwaran H, Van Neste L, Herman JG, Schuebel KE, Watkins DN, Ahuja N, Baylin SB (2008) Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 68:2764–2772PubMedCentralPubMedGoogle Scholar
  100. 100.
    Fu S, Fei Q, Jiang H, Chuai S, Shi S, Xiong W, Jiang L, Lu C, Atadja P, Li E, Shou J (2011) Involvement of histone acetylation of Sox17 and Foxa2 promoters during mouse definitive endoderm differentiation revealed by microRNA profiling. PLoS One 6:e27965PubMedCentralPubMedGoogle Scholar
  101. 101.
    Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G, Shahryari V, Saini S, Hirata H, Ueno K, Chang I, Tanaka Y, Tabatabai ZL, Enokida H, Nakagawa M, Dahiya R (2012) Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS One 7:e43812PubMedCentralPubMedGoogle Scholar
  102. 102.
    Jia Y, Yang Y, Zhan Q, Brock MV, Zheng X, Yu Y, Herman JG, Guo M (2012) Inhibition of SOX17 by microRNA 141 and methylation activates the WNT signaling pathway in esophageal cancer. J Mol Diagn 14:577–585PubMedGoogle Scholar
  103. 103.
    Senanayake U, Das S, Vesely P, Alzoughbi W, Frohlich LF, Chowdhury P, Leuschner I, Hoefler G, Guertl B (2012) miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis 33:1014–1021PubMedGoogle Scholar
  104. 104.
    Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, Shi Y, Hu J, Guan X, Xia Z, Wang J, Zen K, Zhang CY, Zhang C (2013) Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome. Clin Chem 59:658–666PubMedGoogle Scholar
  105. 105.
    Schaefer C (2003) Angiotensin II-receptor-antagonists: further evidence of fetotoxicity but not teratogenicity. Birth Defects Res A Clin Mol Teratol 67:591–594PubMedGoogle Scholar
  106. 106.
    Tabacova S, Little R, Tsong Y, Vega A, Kimmel CA (2003) Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol Drug Saf 12:633–646PubMedGoogle Scholar
  107. 107.
    Weber S (2012) Novel genetic aspects of congenital anomalies of kidney and urinary tract. Curr Opin Pediatr 24:212–218PubMedGoogle Scholar
  108. 108.
    Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, Laube G, Delezoide AL, Bouvier R, Dijoud F, Ollagnon-Roman E, Roume J, Joubert M, Antignac C, Gubler MC (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968PubMedGoogle Scholar
  109. 109.
    Goyal R, Lister R, Leitzke A, Goyal D, Gheorghe CP, Longo LD (2011) Antenatal maternal hypoxic stress: adaptations of the placental renin-angiotensin system in the mouse. Placenta 32:134–139PubMedGoogle Scholar
  110. 110.
    Goyal R, Leitzke A, Goyal D, Gheorghe CP, Longo LD (2011) Antenatal maternal hypoxic stress: adaptations in fetal lung renin-angiotensin system. Reprod Sci 18:180–189PubMedGoogle Scholar
  111. 111.
    Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD (2010) Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci 17:227–238PubMedGoogle Scholar
  112. 112.
    Macconi D, Tomasoni S, Romagnani P, Trionfini P, Sangalli F, Mazzinghi B, Rizzo P, Lazzeri E, Abbate M, Remuzzi G, Benigni A (2012) MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J Am Soc Nephrol 23:1496–1505PubMedGoogle Scholar
  113. 113.
    Jeppesen PL, Christensen GL, Schneider M, Nossent AY, Jensen HB, Andersen DC, Eskildsen T, Gammeltoft S, Hansen JL, Sheikh SP (2011) Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes. Br J Pharmacol 164:394–404PubMedGoogle Scholar
  114. 114.
    Sansom SE, Nuovo GJ, Martin MM, Kotha SR, Parinandi NL, Elton TS (2010) miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells. Am J Physiol Gastrointest Liver Physiol 299:G632–G642PubMedGoogle Scholar
  115. 115.
    Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z (2012) miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes. BMC Genomics 13:44PubMedCentralPubMedGoogle Scholar
  116. 116.
    Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE (2007) Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81:405–413PubMedCentralPubMedGoogle Scholar
  117. 117.
    Marrone AK, Edeleva EV, Kucherenko MM, Hsiao NH, Shcherbata HR (2012) Dg-Dys-Syn1 signaling in Drosophila regulates the microRNA profile. BMC Cell Biol 13:26PubMedCentralPubMedGoogle Scholar
  118. 118.
    Kucherenko MM, Marrone AK, Rishko VM, Magliarelli Hde F, Shcherbata HR (2011) Stress and muscular dystrophy: a genetic screen for dystroglycan and dystrophin interactors in Drosophila identifies cellular stress response components. Dev Biol 352:228–242PubMedGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  1. 1.Division of NephrologyChildren’s Hospital of Pittsburgh of UPMCPittsburghUSA

Personalised recommendations