Skip to main content

Advertisement

Log in

Strategies for the preservation of residual renal function in pediatric dialysis patients

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In adults with end-stage renal disease (ESRD), the preservation of residual renal function (RRF) has been shown to be associated with decreased mortality and improved control of complications of chronic kidney disease. However, less is known on the benefits of RRF in the pediatric dialysis population. The purpose of this article is to review the clinical significance of RRF and to discuss strategies for the preservation of RRF in children with ESRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. United States Renal Data System (2009) USRDS 2009 Annual data report: Atlas of end-stage renal disease in the United States. United States Renal Data System, Bethesda

  2. Peritoneal Dialysis Adequacy Work Group (2006) Clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis 48:S98–S129

    Google Scholar 

  3. Hemodialysis Adequacy 2006 Work Group (2006) Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis 48:S2–S90

    Google Scholar 

  4. Canada–USA (CANUSA) Peritoneal Dialysis Study Group (1996) Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol 7:198–207

    Google Scholar 

  5. Jager KJ, Merkus MP, Dekker FW, Boeschoten EW, Tijssen JG, Stevens P, Bos WJ, Krediet RT (1999) Mortality and technique failure in patients starting chronic peritoneal dialysis: results of The Netherlands Cooperative Study on the Adequacy of Dialysis. NECOSAD Study Group. Kidney Int 55:1476–1485

    CAS  PubMed  Google Scholar 

  6. Merkus MP, Jager KJ, Dekker FW, de Haan RJ, Boeschoten EW, Krediet RT (2000) Predictors of poor outcome in chronic dialysis patients: The Netherlands Cooperative Study on the Adequacy of Dialysis. The NECOSAD Study Group. Am J Kidney Dis 35:69–79

    CAS  PubMed  Google Scholar 

  7. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, Mujais S (2002) Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 13:1307–1320

    CAS  PubMed  Google Scholar 

  8. Bargman JM, Thorpe KE, Churchill DN (2001) Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol 12:2158–2162

    CAS  PubMed  Google Scholar 

  9. Diaz-Buxo JA, Lowrie EG, Lew NL, Zhang SM, Zhu X, Lazarus JM (1999) Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis 33:523–534

    CAS  PubMed  Google Scholar 

  10. Termorshuizen F, Dekker FW, van Manen JG, Korevaar JC, Boeschoten EW, Krediet RT (2004) Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. J Am Soc Nephrol 15:1061–1070

    PubMed  Google Scholar 

  11. Termorshuizen F, Korevaar JC, Dekker FW, van Manen JG, Boeschoten EW, Krediet RT (2003) The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis 41:1293–1302

    PubMed  Google Scholar 

  12. Rocco M, Soucie JM, Pastan S, McClellan WM (2000) Peritoneal dialysis adequacy and risk of death. Kidney Int 58:446–457

    CAS  PubMed  Google Scholar 

  13. Liao CT, Chen YM, Shiao CC, Hu FC, Huang JW, Kao TW, Chuang HF, Hung KY, Wu KD, Tsai TJ (2009) Rate of decline of residual renal function is associated with all-cause mortality and technique failure in patients on long-term peritoneal dialysis. Nephrol Dial Transplant 24:2909–2914

    PubMed  Google Scholar 

  14. Wang AY, Wang M, Woo J, Law MC, Chow KM, Li PK, Lui SF, Sanderson JE (2002) A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 62:639–647

    PubMed  Google Scholar 

  15. Menon MK, Naimark DM, Bargman JM, Vas SI, Oreopoulos DG (2001) Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transplant 16:2207–2213

    CAS  PubMed  Google Scholar 

  16. Wang AY, Wang M, Woo J, Lam CW, Lui SF, Li PK, Sanderson JE (2004) Inflammation, residual kidney function, and cardiac hypertrophy are interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J Am Soc Nephrol 15:2186–2194

    CAS  PubMed  Google Scholar 

  17. Kawaguchi T, Tong L, Robinson BM, Sen A, Fukuhara S, Kurokawa K, Canaud B, Lameire N, Port FK, Pisoni RL (2011) C-reactive protein and mortality in hemodialysis patients: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephron Clin Pract 117:c167–c178

    CAS  PubMed  Google Scholar 

  18. Segall L, Covic A (2010) What to measure at dialysis initiation for reliable prediction of cardiovascular outcomes: just look at CRP and pulse pressure. Perit Dial Int 30:280–283

    CAS  PubMed  Google Scholar 

  19. Wang AY, Lam CW, Chan IH, Wang M, Lui SF, Sanderson JE (2009) Long-term mortality and cardiovascular risk stratification of peritoneal dialysis patients using a combination of inflammation and calcification markers. Nephrol Dial Transplant 24:3826–3833

    CAS  PubMed  Google Scholar 

  20. Mitsnefes MM, Barletta GM, Dresner IG, Chand DH, Geary D, Lin JJ, Patel H (2006) Severe cardiac hypertrophy and long-term dialysis: the Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol 21:1167–1170

    PubMed  Google Scholar 

  21. Bakkaloglu SA, Borzych D, Soo HI, Serdaroglu E, Buscher R, Salas P, Patel H, Drozdz D, Vondrak K, Watanabe A, Villagra J, Yavascan O, Valenzuela M, Gipson D, Ng KH, Warady BA, Schaefer F (2011) Cardiac geometry in children receiving chronic peritoneal dialysis: findings from the International Pediatric Peritoneal Dialysis Network (IPPN) registry. Clin J Am Soc Nephrol 6:1926–1933

    PubMed Central  PubMed  Google Scholar 

  22. VanDeVoorde RG, Barletta GM, Chand DH, Dresner IG, Lane J, Leiser J, Lin JJ, Pan CG, Patel H, Valentini RP, Mitsnefes MM (2007) Blood pressure control in pediatric hemodialysis: the Midwest Pediatric Nephrology Consortium Study. Pediatr Nephrol 22:547–553

    PubMed  Google Scholar 

  23. Halbach SM, Martz K, Mattoo T, Flynn J (2012) Predictors of blood pressure and its control in pediatric patients receiving dialysis. J Pediatr 160:621–625

    PubMed Central  PubMed  Google Scholar 

  24. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ, Wolff ED, Davin JC, Heymans HS (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629

    PubMed  Google Scholar 

  25. Parekh RS, Carroll CE, Wolfe RA, Port FK (2002) Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr 141:191–197

    CAS  PubMed  Google Scholar 

  26. Bakkaloglu SA, Saygili A, Sever L, Noyan A, Akman S, Ekim M, Aksu N, Doganay B, Yildiz N, Duzova A, Soylu A, Alpay H, Sonmez F, Civilibal M, Erdem S, Kardelen F (2009) Assessment of cardiovascular risk in paediatric peritoneal dialysis patients: a Turkish Pediatric Peritoneal Dialysis Study Group (TUPEPD) report. Nephrol Dial Transplant 24:3525–3532

    PubMed  Google Scholar 

  27. Civilibal M, Caliskan S, Oflaz H, Sever L, Candan C, Canpolat N, Kasapcopur O, Bugra Z, Arisoy N (2007) Traditional and “new” cardiovascular risk markers and factors in pediatric dialysis patients. Pediatr Nephrol 22:1021–1029

    PubMed  Google Scholar 

  28. Cengiz N, Baskin E, Agras PI, Sezgin N, Saatci U (2005) Relationship between chronic inflammation and cardiovascular risk factors in children on maintenance hemodialysis. Transplant Proc 37:2915–2917

    CAS  PubMed  Google Scholar 

  29. Elshamaa MF, Sabry S, Nabih M, Elghoroury EA, El-Saaid GS, Ismail AA (2009) Oxidative stress markers and C-reactive protein in pediatric patients on hemodialysis. Ann Nutr Metab 55:309–316

    CAS  PubMed  Google Scholar 

  30. Borzych D, Rees L, Ha IS, Chua A, Valles PG, Lipka M, Zambrano P, Ahlenstiel T, Bakkaloglu SA, Spizzirri AP, Lopez L, Ozaltin F, Printza N, Hari P, Klaus G, Bak M, Vogel A, Ariceta G, Yap HK, Warady BA, Schaefer F (2010) The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int 78:1295–1304

    PubMed  Google Scholar 

  31. Wang AY, Woo J, Sea MM, Law MC, Lui SF, Li PK (2004) Hyperphosphatemia in Chinese peritoneal dialysis patients with and without residual kidney function: what are the implications? Am J Kidney Dis 43:712–720

    PubMed  Google Scholar 

  32. Wong CS, Hingorani S, Gillen DL, Sherrard DJ, Watkins SL, Brandt JR, Ball A, Stehman-Breen CO (2002) Hypoalbuminemia and risk of death in pediatric patients with end-stage renal disease. Kidney Int 61:630–637

    PubMed  Google Scholar 

  33. Marcen R, Teruel JL, de la Cal MA, Gamez C (1997) The impact of malnutrition in morbidity and mortality in stable haemodialysis patients. Spanish Cooperative Study of Nutrition in Hemodialysis. Nephrol Dial Transplant 12:2324–2331

    CAS  PubMed  Google Scholar 

  34. Bergstrom J (1995) Nutrition and mortality in hemodialysis. J Am Soc Nephrol 6:1329–1341

    CAS  PubMed  Google Scholar 

  35. Chung SH, Heimburger O, Bergstrom J, Lindholm B (1999) Nutrition and clinical outcome in peritoneal dialysis patients. Pol Arch Med Wewn 102(Spec No):9–17

    PubMed  Google Scholar 

  36. Acchiardo SR, Moore LW, Latour PA (1983) Malnutrition as the main factor in morbidity and mortality of hemodialysis patients. Kidney Int Suppl 16:S199–S203

    CAS  PubMed  Google Scholar 

  37. [No authors listed] (2000) Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am J Kidney Dis 35:S1–S140

  38. KDOQI Work Group (2009) Clinical practice guideline for nutrition in children with CKD: 2008 update. Executive summary. Am J Kidney Dis 53:S11–S104

    Google Scholar 

  39. Suda T, Hiroshige K, Ohta T, Watanabe Y, Iwamoto M, Kanegae K, Ohtani A, Nakashima Y (2000) The contribution of residual renal function to overall nutritional status in chronic haemodialysis patients. Nephrol Dial Transplant 15:396–401

    CAS  PubMed  Google Scholar 

  40. Wang AY, Sea MM, Ip R, Law MC, Chow KM, Lui SF, Li PK, Woo J (2002) Independent effects of residual renal function and dialysis adequacy on dietary micronutrient intakes in patients receiving continuous ambulatory peritoneal dialysis. Am J Clin Nutr 76:569–576

    CAS  PubMed  Google Scholar 

  41. Wang AY, Sea MM, Ip R, Law MC, Chow KM, Lui SF, Li PK, Woo J (2001) Independent effects of residual renal function and dialysis adequacy on actual dietary protein, calorie, and other nutrient intake in patients on continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 12:2450–2457

    CAS  PubMed  Google Scholar 

  42. Guzzo I, Mancini E, Wafo SK, Rava L, Picca S (2009) Residual renal function and nutrition in young patients on chronic hemodialysis. Pediatr Nephrol 24:1391–1397

    PubMed  Google Scholar 

  43. Acar B, Yalcinkaya F, Cakar N, Yuksel S, Ozcakar ZB, Uncu N, Kara N, Elhan AH, Ekim M (2008) The outcome for pediatric patients on peritoneal dialysis. J Nephrol 21:394–399

    PubMed  Google Scholar 

  44. Mendley SR, Majkowski NL (2000) Urea and nitrogen excretion in pediatric peritoneal dialysis patients. Kidney Int 58:2564–2570

    CAS  PubMed  Google Scholar 

  45. Chadha V, Blowey DL, Warady BA (2001) Is growth a valid outcome measure of dialysis clearance in children undergoing peritoneal dialysis? Perit Dial Int 21[Suppl 3]:S179–S184

    PubMed  Google Scholar 

  46. Penne EL, van der Weerd NC, Grooteman MP, Mazairac AH, van den Dorpel MA, Nube MJ, Bots ML, Levesque R, Ter Wee PM, Blankestijn PJ (2011) Role of residual renal function in phosphate control and anemia management in chronic hemodialysis patients. Clin J Am Soc Nephrol 6:281–289

    PubMed Central  PubMed  Google Scholar 

  47. Erkan E, Moritz M, Kaskel F (2001) Impact of residual renal function in children on hemodialysis. Pediatr Nephrol 16:858–861

    CAS  PubMed  Google Scholar 

  48. Saxena R (2008) Pathogenesis and treatment of peritoneal membrane failure. Pediatr Nephrol 23:695–703

    PubMed  Google Scholar 

  49. Wieslander AP (1996) Cytotoxicity of peritoneal dialysis fluid - is it related to glucose breakdown products? Nephrol Dial Transplant 11:958–959

    CAS  PubMed  Google Scholar 

  50. Burton JO, Jefferies HJ, Selby NM, McIntyre CW (2009) Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin J Am Soc Nephrol 4:914–920

    PubMed Central  PubMed  Google Scholar 

  51. Burton JO, Jefferies HJ, Selby NM, McIntyre CW (2009) Hemodialysis-induced repetitive myocardial injury results in global and segmental reduction in systolic cardiac function. Clin J Am Soc Nephrol 4:1925–1931

    PubMed Central  PubMed  Google Scholar 

  52. Hothi DK, Rees L, Marek J, Burton J, McIntyre CW (2009) Pediatric myocardial stunning underscores the cardiac toxicity of conventional hemodialysis treatments. Clin J Am Soc Nephrol 4:790–797

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Lew SQ (1994) How to measure residual renal function in patients on maintenance hemodialysis. Adv Ren Replace Ther 1:185–193

    CAS  PubMed  Google Scholar 

  54. Milutinovic J, Cutler RE, Hoover P, Meijsen B, Scribner BH (1975) Measurement of residual glomerular filtration rate in the patient receiving repetitive hemodialysis. Kidney Int 8:185–190

    CAS  PubMed  Google Scholar 

  55. Delaney MP, Stevens PE, Al HM, Stowe HJ, Judge C, Lamb EJ (2008) Relationship of serum cystatin C to peritoneal and renal clearance measures in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis 51:278–284

    CAS  PubMed  Google Scholar 

  56. Ros S, Bajo A, del Peso G, Garcia de Miguel A, Santacruz S, Fernandez E, de Garcia R, Selgas R (2007) Cystatin C as marker of residual renal function in patients on peritoneal dialysis: relation with parameters of peritoneal function. J Nephrol 20:468–473

    CAS  PubMed  Google Scholar 

  57. Kim SJ, Sohn YB, Park SW, Jin DK, Paik KH (2011) Serum cystatin C for estimation of residual renal function in children on peritoneal dialysis. Pediatr Nephrol 26:433–440

    PubMed  Google Scholar 

  58. Lindsay RM, Huang SH, Filler G (2010) Cystatin C measurements in the assessment of residual renal function, dialysis adequacy, and beyond. Perit Dial Int 30:437–439

    PubMed  Google Scholar 

  59. Huang SH, Filler G, Lindsay RM (2012) Residual renal function calculated from serum cystatin C measurements and knowledge of the weekly standard Kt/V urea. Perit Dial Int 32:102–104

    PubMed Central  PubMed  Google Scholar 

  60. Huang SH, Filler G, Yasin A, Lindsay RM (2011) Cystatin C reduction ratio depends on normalized blood liters processed and fluid removal during hemodialysis. Clin J Am Soc Nephrol 6:319–325

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Hoek FJ, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT (2007) Estimation of residual glomerular filtration rate in dialysis patients from the plasma cystatin C level. Nephrol Dial Transplant 22:1633–1638

    CAS  PubMed  Google Scholar 

  62. Al-Malki N, Heidenheim PA, Filler G, Yasin A, Lindsay RM (2009) Cystatin C levels in functionally anephric patients undergoing dialysis: the effect of different methods and intensities. Clin J Am Soc Nephrol 4:1606–1610

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Moist LM, Port FK, Orzol SM, Young EW, Ostbye T, Wolfe RA, Hulbert-Shearon T, Jones CA, Bloembergen WE (2000) Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol 11:556–564

    CAS  PubMed  Google Scholar 

  64. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT (2002) Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 62:1046–1053

    PubMed  Google Scholar 

  65. Dinarello CA (1990) Cytokines and biocompatibility. Blood Purif 8:208–213

    CAS  PubMed  Google Scholar 

  66. Panichi V, Migliori M, De PS, Taccola D, Andreini B, Metelli MR, Giovannini L, Palla R (2000) The link of biocompatibility to cytokine production. Kidney Int Suppl 76:S96–S103

    CAS  PubMed  Google Scholar 

  67. Jofre R, Rodriguez-Benitez P, Lopez-Gomez JM, Perez-Garcia R (2006) Inflammatory syndrome in patients on hemodialysis. J Am Soc Nephrol 17:S274–S280

    CAS  PubMed  Google Scholar 

  68. McCarthy JT, Jenson BM, Squillace DP, Williams AW (1997) Improved preservation of residual renal function in chronic hemodialysis patients using polysulfone dialyzers. Am J Kidney Dis 29:576–583

    CAS  PubMed  Google Scholar 

  69. Hartmann J, Fricke H, Schiffl H (1997) Biocompatible membranes preserve residual renal function in patients undergoing regular hemodialysis. Am J Kidney Dis 30:366–373

    CAS  PubMed  Google Scholar 

  70. Fischbach M, Terzic J, Menouer S, Soulami K, Dangelser C, Helmstetter A, Gehant F (2001) Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial 17:269–273

    CAS  PubMed  Google Scholar 

  71. Ward RA (2004) Ultrapure dialysate. Semin Dial 17:489–497

    PubMed  Google Scholar 

  72. Ward RA (2000) Ultrapure dialysate: a desirable and achievable goal for routine hemodialysis. Semin Dial 13:378–380

    CAS  PubMed  Google Scholar 

  73. Schiffl H, Lang SM, Fischer R (2002) Ultrapure dialysis fluid slows loss of residual renal function in new dialysis patients. Nephrol Dial Transplant 17:1814–1818

    CAS  PubMed  Google Scholar 

  74. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K (2002) Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int 61:256–265

    CAS  PubMed  Google Scholar 

  75. Feber J, Scharer K, Schaefer F, Mikova M, Janda J (1994) Residual renal function in children on haemodialysis and peritoneal dialysis therapy. Pediatr Nephrol 8:579–583

    CAS  PubMed  Google Scholar 

  76. Hiroshige K, Yuu K, Soejima M, Takasugi M, Kuroiwa A (1996) Rapid decline of residual renal function in patients on automated peritoneal dialysis. Perit Dial Int 16:307–315

    CAS  PubMed  Google Scholar 

  77. Hufnagel G, Michel C, Queffeulou G, Skhiri H, Damieri H, Mignon F (1999) The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant 14:1224–1228

    CAS  PubMed  Google Scholar 

  78. Holley JL, Aslam N, Bernardini J, Fried L, Piraino B (2001) The influence of demographic factors and modality on loss of residual renal function in incident peritoneal dialysis patients. Perit Dial Int 21:302–305

    CAS  PubMed  Google Scholar 

  79. Cnossen TT, Usvyat L, Kotanko P, van der Sande FM, Kooman JP, Carter M, Leunissen KM, Levin NW (2011) Comparison of outcomes on continuous ambulatory peritoneal dialysis versus automated peritoneal dialysis: results from a USA database. Perit Dial Int 31:679–684

    CAS  PubMed  Google Scholar 

  80. Roszkowska-Blaim M, Skrzypczyk P, Drozdz D, Pietrzyk JA (2009) Residual renal function in children treated with continuous ambulatory peritoneal dialysis or automated peritoneal dialysis–a preliminary study. Adv Perit Dial 25:103–109

    PubMed  Google Scholar 

  81. Verrina E, Cappelli V, Perfumo F (2009) Selection of modalities, prescription, and technical issues in children on peritoneal dialysis. Pediatr Nephrol 24:1453–1464

    PubMed Central  PubMed  Google Scholar 

  82. Verrina EE, Cannavo R, Schaefer B, Schmitt CP (2012) Are current peritoneal dialysis solutions adequate for pediatric use? Contrib Nephrol 178:16–22

    PubMed  Google Scholar 

  83. Witowski J, Bender TO, Wisniewska-Elnur J, Ksiazek K, Passlick-Deetjen J, Breborowicz A, Jorres A (2003) Mesothelial toxicity of peritoneal dialysis fluids is related primarily to glucose degradation products, not to glucose per se. Perit Dial Int 23:381–390

    CAS  PubMed  Google Scholar 

  84. Witowski J, Jorres A, Korybalska K, Ksiazek K, Wisniewska-Elnur J, Bender TO, Passlick-Deetjen J, Breborowicz A (2003) Glucose degradation products in peritoneal dialysis fluids: do they harm? Kidney Int Suppl 84:S148–S151

    Google Scholar 

  85. Witowski J, Wisniewska J, Korybalska K, Bender TO, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jorres A (2001) Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J Am Soc Nephrol 12:2434–2441

    CAS  PubMed  Google Scholar 

  86. Witowski J, Korybalska K, Wisniewska J, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jorres A (2000) Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 11:729–739

    CAS  PubMed  Google Scholar 

  87. Boulanger E, Grossin N, Wautier MP, Taamma R, Wautier JL (2007) Mesothelial RAGE activation by AGEs enhances VEGF release and potentiates capillary tube formation. Kidney Int 71:126–133

    CAS  PubMed  Google Scholar 

  88. Boulanger E, Wautier MP, Wautier JL, Boval B, Panis Y, Wernert N, Danze PM, Dequiedt P (2002) AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression. Kidney Int 61:148–156

    CAS  PubMed  Google Scholar 

  89. Justo P, Sanz AB, Egido J, Ortiz A (2005) 3,4-Dideoxyglucosone-3-ene induces apoptosis in renal tubular epithelial cells. Diabetes 54:2424–2429

    CAS  PubMed  Google Scholar 

  90. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J (2004) The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66:408–418

    PubMed  Google Scholar 

  91. Szeto CC, Chow KM, Lam CW, Leung CB, Kwan BC, Chung KY, Law MC, Li PK (2007) Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products—a 1-year randomized control trial. Nephrol Dial Transplant 22:552–559

    CAS  PubMed  Google Scholar 

  92. Haag-Weber M, Kramer R, Haake R, Islam MS, Prischl F, Haug U, Nabut JL, Deppisch R (2010) Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol Dial Transplant 25:2288–2296

    CAS  PubMed  Google Scholar 

  93. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, Jones B, Kulkarni H, Langham R, Ranganathan D, Schollum J, Suranyi M, Tan SH, Voss D (2012) Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol 23:1097–1107

    PubMed Central  PubMed  Google Scholar 

  94. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, Jones B, Kulkarni H, Langham R, Ranganathan D, Schollum J, Suranyi MG, Tan SH, Voss D (2012) The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial. Nephrol Dial Transplant 27(12):4445–4453

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Schmitt CP, von Heyl D, Rieger S, Arbeiter K, Bonzel KE, Fischbach M, Misselwitz J, Pieper AK, Schaefer F (2007) Reduced systemic advanced glycation end products in children receiving peritoneal dialysis with low glucose degradation product content. Nephrol Dial Transplant 22:2038–2044

    CAS  PubMed  Google Scholar 

  96. Schmitt CP, Nau B, Gemulla G, Bonzel KE, Holtta T, Testa S, Fischbach M, John U, Kemper MJ, Sander A, Arbeiter K, Schaefer F (2013) Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clin J Am Soc Nephrol 8(1):108–115

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Schmitt CP, Bakkaloglu SA, Klaus G, Schroder C, Fischbach M (2011) Solutions for peritoneal dialysis in children: recommendations by the European Pediatric Dialysis Working Group. Pediatr Nephrol 26:1137–1147

    PubMed  Google Scholar 

  98. Adachi Y, Nakagawa Y, Nishio A (2006) Icodextrin preserves residual renal function in patients treated with automated peritoneal dialysis. Perit Dial Int 26:405–407

    CAS  PubMed  Google Scholar 

  99. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, Bosselmann HP, Heimburger O, Simonsen O, Davenport A, Tranaeus A, Vino Filho JC (2003) Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 14:2338–2344

    CAS  PubMed  Google Scholar 

  100. Han SH, Ahn SV, Yun JY, Tranaeus A, Han DS (2012) Effects of icodextrin on patient survival and technique success in patients undergoing peritoneal dialysis. Nephrol Dial Transplant 27:2044–2050

    CAS  PubMed  Google Scholar 

  101. de Boer AW, Schroder CH, van Vliet R, Willems JL, Monnens LA (2000) Clinical experience with icodextrin in children: ultrafiltration profiles and metabolism. Pediatr Nephrol 15:21–24

    PubMed  Google Scholar 

  102. Gotloib L, Wajsbrot V, Shostak A (2005) Osmotic agents hamper mesothelial repopulation as seen in the doughnut in vivo model. Perit Dial Int 25[Suppl 3]:S26–S30

    PubMed  Google Scholar 

  103. Dart A, Feber J, Wong H, Filler G (2005) Icodextrin re-absorption varies with age in children on automated peritoneal dialysis. Pediatr Nephrol 20:683–685

    PubMed  Google Scholar 

  104. Shin SK, Noh H, Kang SW, Seo BJ, Lee IH, Song HY, Choi KH, Ha SK, Lee HY, Han DS (1999) Risk factors influencing the decline of residual renal function in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 19:138–142

    CAS  PubMed  Google Scholar 

  105. Boehm M, Vecsei A, Aufricht C, Mueller T, Csaicsich D, Arbeiter K (2005) Risk factors for peritonitis in pediatric peritoneal dialysis: a single-center study. Pediatr Nephrol 20:1478–1483

    PubMed  Google Scholar 

  106. Perez FM, Rodriguez-Carmona A, Garcia-Naveiro R, Rosales M, Villaverde P, Valdes F (2005) Peritonitis-related mortality in patients undergoing chronic peritoneal dialysis. Perit Dial Int 25:274–284

    Google Scholar 

  107. Han SH, Lee SC, Ahn SV, Lee JE, Kim DK, Lee TH, Moon SJ, Kim BS, Kang SW, Choi KH, Lee HY, Han DS (2007) Reduced residual renal function is a risk of peritonitis in continuous ambulatory peritoneal dialysis patients. Nephrol Dial Transplant 22:2653–2658

    PubMed  Google Scholar 

  108. Wuhl E, Schaefer F (2011) Managing kidney disease with blood-pressure control. Nat Rev Nephrol 7:434–444

    PubMed  Google Scholar 

  109. Li PK, Chow KM, Wong TY, Leung CB, Szeto CC (2003) Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann Intern Med 139:105–112

    CAS  PubMed  Google Scholar 

  110. Suzuki H, Kanno Y, Sugahara S, Okada H, Nakamoto H (2004) Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis 43:1056–1064

    CAS  PubMed  Google Scholar 

  111. Lemes HP, Araujo S, Nascimento D, Cunha D, Garcia C, Queiroz V, Ferreira-Filho SR (2011) Use of small doses of furosemide in chronic kidney disease patients with residual renal function undergoing hemodialysis. Clin Exp Nephrol 15:554–559

    CAS  PubMed  Google Scholar 

  112. Medcalf JF, Harris KP, Walls J (2001) Role of diuretics in the preservation of residual renal function in patients on continuous ambulatory peritoneal dialysis. Kidney Int 59:1128–1133

    CAS  PubMed  Google Scholar 

  113. Shemin D, Maaz D, St PD, Kahn SI, Chazan JA (1999) Effect of aminoglycoside use on residual renal function in peritoneal dialysis patients. Am J Kidney Dis 34:14–20

    CAS  PubMed  Google Scholar 

  114. Singhal MK, Bhaskaran S, Vidgen E, Bargman JM, Vas SI, Oreopoulos DG (2000) Rate of decline of residual renal function in patients on continuous peritoneal dialysis and factors affecting it. Perit Dial Int 20:429–438

    CAS  PubMed  Google Scholar 

  115. Badve SV, Hawley CM, McDonald SP, Brown FG, Boudville NC, Wiggins KJ, Bannister KM, Johnson DW (2012) Use of aminoglycosides for peritoneal dialysis-associated peritonitis does not affect residual renal function. Nephrol Dial Transplant 27:381–387

    CAS  PubMed  Google Scholar 

  116. Baker RJ, Senior H, Clemenger M, Brown EA (2003) Empirical aminoglycosides for peritonitis do not affect residual renal function. Am J Kidney Dis 41:670–675

    CAS  PubMed  Google Scholar 

  117. Li PK, Szeto CC, Piraino B, Bernardini J, Figueiredo AE, Gupta A, Johnson DW, Kuijper EJ, Lye WC, Salzer W, Schaefer F, Struijk DG (2010) Peritoneal dialysis-related infections recommendations: 2010 update. Perit Dial Int 30:393–423

    PubMed  Google Scholar 

  118. Warady BA, Reed L, Murphy G, Kastetter S, Karlsen E, Alon U, Hellerstein S (1993) Aminoglycoside ototoxicity in pediatric patients receiving long-term peritoneal dialysis. Pediatr Nephrol 7:178–181

    CAS  PubMed  Google Scholar 

  119. Warady BA, Schaefer F, Holloway M, Alexander S, Kandert M, Piraino B, Salusky I, Tranaeus A, Divino J, Honda M, Mujais S, Verrina E (2000) Consensus guidelines for the treatment of peritonitis in pediatric patients receiving peritoneal dialysis. Perit Dial Int 20:610–624

    CAS  PubMed  Google Scholar 

  120. Janousek R, Krajina A, Peregrin JH, Dusilova-Sulkova S, Renc O, Hajek J, Dvorak K, Fixa P, Cermakova E (2010) Effect of intravascular iodinated contrast media on natural course of end-stage renal disease progression in hemodialysis patients: a prospective study. Cardiovasc Intervent Radiol 33:61–66

    PubMed  Google Scholar 

  121. Moranne O, Willoteaux S, Pagniez D, Dequiedt P, Boulanger E (2006) Effect of iodinated contrast agents on residual renal function in PD patients. Nephrol Dial Transplant 21:1040–1045

    CAS  PubMed  Google Scholar 

  122. Dittrich E, Puttinger H, Schillinger M, Lang I, Stefenelli T, Horl WH, Vychytil A (2006) Effect of radio contrast media on residual renal function in peritoneal dialysis patients–a prospective study. Nephrol Dial Transplant 21:1334–1339

    PubMed  Google Scholar 

  123. Feldman L, Shani M, Efrati S, Beberashvili I, Yakov-Hai I, Abramov E, Sinuani I, Rosenberg R, Weissgarten J (2011) N-acetylcysteine improves residual renal function in peritoneal dialysis patients: a pilot study. Perit Dial Int 31:545–550

    CAS  PubMed  Google Scholar 

  124. Feldman L, Shani M, Sinuani I, Beberashvili I, Weissgarten J (2012) N-acetylcysteine may improve residual renal function in hemodialysis patients: a pilot study. Hemodial Int 16(4):512–516

    PubMed  Google Scholar 

  125. Vanner SJ, MacDonald PH, Paterson WG, Prentice RS, Da Costa LR, Beck IT (1990) A randomized prospective trial comparing oral sodium phosphate with standard polyethylene glycol-based lavage solution (Golytely) in the preparation of patients for colonoscopy. Am J Gastroenterol 85:422–427

    CAS  PubMed  Google Scholar 

  126. Clarkston WK, Tsen TN, Dies DF, Schratz CL, Vaswani SK, Bjerregaard P (1996) Oral sodium phosphate versus sulfate-free polyethylene glycol electrolyte lavage solution in outpatient preparation for colonoscopy: a prospective comparison. Gastrointest Endosc 43:42–48

    CAS  PubMed  Google Scholar 

  127. Ma KK, Ng CS, Mui LM, Chan KC, Ng EK, Chung SC (2003) Severe hyperphosphatemia and hypocalcemia following sodium phosphate bowel preparation: a forgotten menace. Endoscopy 35:717

    CAS  PubMed  Google Scholar 

  128. Hurst FP, Bohen EM, Osgard EM, Oliver DK, Das NP, Gao SW, Abbott KC (2007) Association of oral sodium phosphate purgative use with acute kidney injury. J Am Soc Nephrol 18:3192–3198

    CAS  PubMed  Google Scholar 

  129. Khurana A, McLean L, Atkinson S, Foulks CJ (2008) The effect of oral sodium phosphate drug products on renal function in adults undergoing bowel endoscopy. Arch Intern Med 168:593–597

    CAS  PubMed  Google Scholar 

  130. Chesney RW, Haughton PB (1974) Tetany following phosphate enemas in chronic renal disease. Am J Dis Child 127:584–586

    CAS  PubMed  Google Scholar 

  131. Oxnard SC, O’Bell J, Grupe WE (1974) Severe tetany in an azotemic child related to a sodium phosphate enema. Pediatrics 53:105–106

    CAS  PubMed  Google Scholar 

  132. Heher EC, Thier SO, Rennke H, Humphreys BD (2008) Adverse renal and metabolic effects associated with oral sodium phosphate bowel preparation. Clin J Am Soc Nephrol 3:1494–1503

    PubMed  Google Scholar 

  133. Kuo HW, Tsai SS, Tiao MM, Liu YC, Lee IM, Yang CY (2010) Analgesic use and the risk for progression of chronic kidney disease. Pharmacoepidemiol Drug Saf 19:745–751

    PubMed  Google Scholar 

  134. Gooch K, Culleton BF, Manns BJ, Zhang J, Alfonso H, Tonelli M, Frank C, Klarenbach S, Hemmelgarn BR (2007) NSAID use and progression of chronic kidney disease. Am J Med 120:280–287

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Teitelbaum.

Additional information

Answers:

1: C

2: D

3: A

4: B

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadnapaphornchai, M.A., Teitelbaum, I. Strategies for the preservation of residual renal function in pediatric dialysis patients. Pediatr Nephrol 29, 825–836 (2014). https://doi.org/10.1007/s00467-013-2554-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2554-0

Keywords

Navigation