Skip to main content

Advertisement

Log in

Is the renin–angiotensin system actually hypertensive?

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The historical view of the renin–angiotensin system (RAS) is that of an endocrine hypertensive system that is controlled by renin and mediated via the action of angiotensin II on its type 1 receptor. Numerous new angiotensins (Ang) and receptors have been described, the majority being hypotensive and natriuretic, namely Ang-(1-7) and its receptor rMas. Renin and its precursor (pro-renin) can bind their common receptor. In addition to the production of Ang II, this receptor triggers intracellular effects. Given the control of renin production by intracellular calcium, calcium homeostasis is of particular importance. Ang-(1-12), which is not controlled by renin, is converted to several different angiotensin peptides and is a new pathway of the RAS. Local RAS enzymes produce or transform the different hyper- or hypotensive angiotensin within vessels and organs, but also in blood through circulating forms of the enzymes. In the kidney, a powerful local vascular RAS allows for the independence of renal vascularization from systemic control. Moreover, the kidney also contains an independent urinary RAS, which counterbalances the systemic RAS and coordinates proximal and distal sodium reabsorption. The systemic and local effects of renal RAS cannot be analyzed without taking into account the antagonistic effect of renalase. Our concept of RAS needs to evolve to take into account its dual potentiality (hyper- or hypotensive).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tigerstedt R, Bergma PG (1898) Niere eine kreilauf. Scand Arch Physiol 8:223–227

    Article  Google Scholar 

  2. Prinzmetal M, Lewis HA, Leo SD (1940) The etiology of hypertension due to complete renal ischemia. J Exp Med 72:763–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Lorenz JN, Weihprecht H, Schnermann J, Skøtt O, Briggs JP (1991) Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol 260:F486–F493

    PubMed  CAS  Google Scholar 

  4. Yang J, Chen C, Ren H, Han Y, He D, Zhou L, Hopfer U, Jose PA, Zeng C (2012) Angiotensin II AT2 receptor decreases AT1 receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. J Hypertens 30:1176–1184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Hakam AC, Hussain T (2006) Angiotensin II AT2 receptors inhibit proximal tubular Na+−K+−ATPase activity via a NO/cGMP-dependent pathway. Am J Physiol Renal Physiol 290:F1430–F1436

    Article  PubMed  CAS  Google Scholar 

  6. Horiuchi M, Iwanami J, Mogi M (2012) Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond) 123:193–203

    Article  CAS  Google Scholar 

  7. Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303

    CAS  Google Scholar 

  8. Dilauro M, Burns KD (2009) Angiotensin-(1–7) and its effects in the kidney. Sci World J 9:522–535

    Article  CAS  Google Scholar 

  9. Lambert D, Hooper NM, Turner AJ (2008) Angiotensin-converting enzyme 2 and new insights into the renin angiotensin system. Biochem Pharmacol 75:781–786

    Article  PubMed  CAS  Google Scholar 

  10. Nguyen Dinh Cat A, Touyz RM (2011) A new look at the renin–angiotensin system-focusing on the vascular system. Peptides 32:2141–2150

    Article  PubMed  CAS  Google Scholar 

  11. Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM (2004) Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 383:45–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    PubMed  CAS  Google Scholar 

  13. Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93:177–209

    Article  PubMed  CAS  Google Scholar 

  14. Daniels D, Mietlicki EG, Nowak EL, Fluharty SJ (2009) Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats. Exp Physiol 94:130–137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Allred AJ, Diz DI, Ferrario CM, Chappell MC (2000) Pathways for angiotensin-(1–7) metabolism in pulmonary and renal tissues. Am J Renal Physiol 279:F841–F850

    CAS  Google Scholar 

  16. Jackman HL, Massad MG, Sekosan M, Tan F, Brovkovych V, Marcic BM, Erdos EG (2002) Angiotensin 1–9 and 1–7 release in human heart: role of cathepsin A. Hypertension 39:976–981

    Article  PubMed  CAS  Google Scholar 

  17. Flores-Muñoz M, Smith NJ, Haggerty C, Milligan G, Nicklin SA (2011) Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. J Physiol 589:939–951

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM (2006) Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 48:914–920

    Article  PubMed  CAS  Google Scholar 

  19. Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN, Tepel M, Schuchardt M, Schlüter H, Wiedon A, Beyermann M, Bader M, Todiras M, Zidek W, Jankowski J (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol 27:297–302

    Article  PubMed  CAS  Google Scholar 

  20. Jankowski V, Tölle M, Santos RA, Günthner T, Krause E, Beyermann M, Welker P, Bader M, Pinheiro SV, Sampaio WO, Lautner R, Kretschmer A, van der Giet M, Zidek W, Jankowski J (2011) Angioprotectin: an angiotensin II-like peptide causing vasodilatory effects. FASEB J 25:2987–2995

    Article  PubMed  CAS  Google Scholar 

  21. Pratt RE, Carleton JE, Richie JP, Heusser C, Dzau VJ (1987) Human renin biosynthesis and secretion in normal and ischemic kidneys. Proc Natl Acad Sci USA 84:7837–7840

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Danser AH, Deinum J (2005) Renin, prorenin and the putative (pro)renin receptor. Hypertension 46:1069–1076

    Article  PubMed  CAS  Google Scholar 

  23. Toffelmire EB, Slater K, Corvol P, Menard J, Schambelan M (1989) Response of plasma prorenin and active renin to chronic and acute alterations of renin secretion in normal humans. Studies using a direct immunoradiometric assay. J Clin Invest 83:679–687

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Skott O (1986) Episodic release of renin from single isolated perfused rat afferent arterioles. Pflugers Arch 407:41–45

    Article  PubMed  CAS  Google Scholar 

  25. Batenburg WW, Krop M, Garrelds IM, de Vries R, de Bruin RJ, Burcklé CA, Müller DN, Bader M, Ngyen G, Danser AH (2007) Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 25:2441–2453

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen G (2006) Renin/prorenin receptors. Kidney Int 69:1503–1506

    Article  PubMed  CAS  Google Scholar 

  27. Nguyen G, Contrepas A (2008) The (pro)renin receptors. J Mol Med (Berl) 86:643–646

    Article  CAS  Google Scholar 

  28. Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W (2006) Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69:105–113

    Article  PubMed  CAS  Google Scholar 

  29. Huang Y, Noble NA, Zhang J, Xu C, Border WA (2007) Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72:45–52

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen G (2011) Renin, (pro)renin and receptor: an update. Clin Sci (Lond) 120:169–178

    Article  CAS  Google Scholar 

  31. Batenburg WW, Danser AH (2012) (Pro)renin and its receptors: pathophysiological implications. Clin Sci (Lond) 123:121–123

    Article  CAS  Google Scholar 

  32. Peters J (2008) Secretory and cytosolic (pro)renin in kidney, heart, and adrenal gland. J Mol Med (Berl) 86:711–714

    Article  CAS  Google Scholar 

  33. Campbell DJ (2008) Critical review of prorenin and (pro)renin receptor research. Hypertension 515:1259–1264

    Article  CAS  Google Scholar 

  34. Friis UG, Madsen K, Stubbe J, Hansen PB, Svenningsen P, Bie P, Skøtt O, Jensen BL (2013) Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch 465:25–37

    Article  PubMed  CAS  Google Scholar 

  35. Sequeira López ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728

    Article  PubMed  Google Scholar 

  36. Resnick LM, Laragh JH (1985) Renin, calcium metabolism and the pathophysiologic basis of antihypertensive therapy. Am J Cardiol 56:68H–74H

    Article  PubMed  CAS  Google Scholar 

  37. Gal-Moscovici A, Sprague SM (2010) Use of vitamin D in chronic kidney disease patients. Kidney Int 78:146–151

    Article  PubMed  CAS  Google Scholar 

  38. Shroff R, Wan M, Rees L (2012) Can vitamin D slow down the progression of chronic kidney disease? Pediatr Nephrol 27:2167–2173

    Article  PubMed  Google Scholar 

  39. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1, 25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin–angiotensin system. J Clin Invest 110:229–238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH (2007) Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension 49:162–169

    Article  PubMed  CAS  Google Scholar 

  41. Atchison DK, Beierwaltes WH (2013) The influence of extracellular and intracellular calcium on the secretion of renin. Pflugers Arch 465:59–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Sigmund CD (2002) Regulation of renin expression and blood pressure by vitamin D(3). J Clin Invest 110:155–156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Vaidya A, Forman JP, Hopkins PN, Seely EW, Williams JS (2011) 25-hydroxyvitamin D is associated with plasma renin activity and the pressor response to dietary sodium intake in Caucasians. J Renin Angiotensin Aldosterone Syst 12:311–319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Kuipers I, van der Harst P, Kuipers F, van Genne L, Goris M, Lehtonen JY, van Veldhuisen DJ, van Gilst WH, de Boer RA (2010) Activation of liver X receptor-alpha reduces activation of the renal and cardiac renin-angiotensin-aldosterone system. Lab Invest 90:630–636

    Article  PubMed  CAS  Google Scholar 

  45. Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K (2006) Isolation and identification of proangiotensin-12, a possible component of the renin–angiotensin system. Biochem Biophys Res Commun 350:1026–1031

    Article  PubMed  CAS  Google Scholar 

  46. Nagata S, Kato J, Kuwasako K, Kitamura K (2010) Plasma and tissue levels of proangiotensin-12 and components of the renin–angiotensin system (RAS) following low- or high-salt feeding in rats. Peptides 31:889–892

    Article  PubMed  CAS  Google Scholar 

  47. Westwood BM, Chappell MC (2012) Divergent pathways for the angiotensin-(1-12) metabolism in the rat circulation and kidney. Peptides 35:190–195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Jessup JA, Trask AJ, Chappell MC, Nagata S, Kato J, Kitamura K, Ferrario CM (2008) Localization of the novel angiotensin peptide, angiotensin-(1–12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol 294:2614–2618

    Article  CAS  Google Scholar 

  49. Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, Trask AJ, Kitamura K, Whaley-Connell A, Sowers JR (2009) Differential regulation of angiotensin-(1–12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol 296:H1184–H1192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Campbell DJ (1987) Tissue renin-angiotensin system: sites of angiotensin formation. J Cardiovasc Pharmacol 10:S1–S8

    Article  PubMed  CAS  Google Scholar 

  51. Wei L, Alhenc-Gelas F, Soubrier F, Michaud A, Corvol P, Clauser E (1991) Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem 266:5540–5546

    PubMed  CAS  Google Scholar 

  52. McKenzie CA, Zhu X, Forrester TE, Luke A, Adeyemo AA, Bouzekri N, Cooper RS (2008) A genome-wide search replicates evidence of a quantitative trait locus for circulating angiotensin I-converting enzyme (ACE) unlinked to the ACE gene. BMC Med Genomics 1:23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Velez JC (2009) The importance of the intrarenal renin–angiotensin system. Nat Clin Pract Nephrol 5:89–100

    Article  PubMed  CAS  Google Scholar 

  54. Varagic J (2010) The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Renal Physiol 298:F1297–F1305

    Article  CAS  Google Scholar 

  55. Velez JC, Bland AM, Arthur JM, Raymond JR, Janech MG (2007) Characterization of renin–angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 293:F398–F407

    Article  PubMed  CAS  Google Scholar 

  56. Velez JC, Ryan KJ, Harbeson CE, Bland AM, Budisavljevic MN, Arthur JM, Fitzgibbon WR, Raymond JR, Janech MG (2008) Angiotensin I is largely converted to angiotensin (1–7) and angiotensin (2–10) by isolated rat glomeruli. Hypertension 53:790–797

    Article  CAS  Google Scholar 

  57. Pinheiro SV, Simões E, Silva AC (2012) Angiotensin converting enzyme 2, angiotensin-(1–7), and receptor MAS axis in the kidney. Int J Hypertens 2012:414128

    PubMed Central  PubMed  Google Scholar 

  58. Mamenko M, Zaika O, Ilatovskaya DV, Staruschenko A, Pochynyuk O (2012) Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone. J Biol Chem 287:660–671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Desir G (2012) Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol 27:719–725

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Vincent Esnault for his fruitful comments.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Bérard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bérard, E., Niel, O. & Rubio, A. Is the renin–angiotensin system actually hypertensive?. Pediatr Nephrol 29, 951–960 (2014). https://doi.org/10.1007/s00467-013-2481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2481-0

Keywords

Navigation