Skip to main content

Advertisement

Log in

From bone abnormalities to mineral metabolism dysregulation in autosomal dominant polycystic kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of kidney failure. It is a systemic disorder, not only affecting the kidneys, but also associated with cyst formation in other organs such as the liver, spleen, pancreas, and seminal vesicles. Other extra-renal symptoms may consist of intracranial arterial aneurysms, cardiac valvular defects, abdominal and inguinal hernias and colonic diverticulosis. Very little is known regarding bone involvement in ADPKD; however, recent evidence has revealed the potential role of fibroblast growth factor 23 (FGF23). FGF23 is an endocrine fibroblast growth factor acting in the kidney as a phosphaturic hormone and a suppressor of active vitamin D with key effects on the bone/kidney/parathyroid axis, and has been shown to increase in patients with ADPKD, even with normal renal function. The aim of this review is to provide an overview of bone and mineral abnormalities found in experimental models and in patients with ADPKD, and to discuss the possible role of FGF23 in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADPKD:

Autosomal dominant polycystic kidney disease

[Ca2+]cyt :

Cytosolic Ca2+ concentration

CKD:

Chronic kidney disease

1,25(OH)2D:

1,25-dihydroxyvitamin D

FGF23:

Fibroblast growth factor 23

GFR:

Glomerular filtration rate

PC1:

Polycystin-1

PC2:

Polycystin-2

TmP/GFR:

Tubular maximum for phosphate corrected for the glomerular filtration rate

References

  1. Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329:332–342

    Article  PubMed  CAS  Google Scholar 

  2. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  PubMed  CAS  Google Scholar 

  3. Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76:149–168

    Article  PubMed  Google Scholar 

  4. Wolf M (2012) Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 82:737–747

    Article  PubMed  CAS  Google Scholar 

  5. Pavik I, Jaeger P, Kistler AD, Poster D, Krauer F, Cavelti-Weder C, Rentsch KM, Wuthrich RP, Serra AL (2011) Patients with autosomal dominant polycystic kidney disease have elevated fibroblast growth factor 23 levels and a renal leak of phosphate. Kidney Int 79:234–240

    Article  PubMed  CAS  Google Scholar 

  6. Pavik I, Jaeger P, Ebner L, Poster D, Krauer F, Kistler AD, Rentsch K, Andreisek G, Wagner CA, Devuyst O, Wuthrich RP, Schmid C, Serra AL (2012) Soluble klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 7:248–257

    Article  PubMed  CAS  Google Scholar 

  7. Cheong B, Muthupillai R, Rubin MF, Flamm SD (2007) Normal values for renal length and volume as measured by magnetic resonance imaging. Clin J Am Soc Nephrol 2:38–45

    Article  PubMed  Google Scholar 

  8. Chapman AB, Schrier RW (1991) Pathogenesis of hypertension in autosomal dominant polycystic kidney disease. Semin Nephrol 11:653–660

    PubMed  CAS  Google Scholar 

  9. Chapman AB, Johnson AM, Rainguet S, Hossack K, Gabow P, Schrier RW (1997) Left ventricular hypertrophy in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 8:1292–1297

    PubMed  CAS  Google Scholar 

  10. Sedman A, Bell P, Manco-Johnson M, Schrier R, Warady BA, Heard EO, Butler-Simon N, Gabow P (1987) Autosomal dominant polycystic kidney disease in childhood: a longitudinal study. Kidney Int 31:1000–1005

    Article  PubMed  CAS  Google Scholar 

  11. Schrier RW (2009) Renal volume, renin-angiotensin-aldosterone system, hypertension, and left ventricular hypertrophy in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 20:1888–1893

    Article  PubMed  Google Scholar 

  12. Gabow PA, Chapman AB, Johnson AM, Tangel DJ, Duley IT, Kaehny WD, Manco-Johnson M, Schrier RW (1990) Renal structure and hypertension in autosomal dominant polycystic kidney disease. Kidney Int 38:1177–1180

    Article  PubMed  CAS  Google Scholar 

  13. Kelleher CL, McFann KK, Johnson AM, Schrier RW (2004) Characteristics of hypertension in young adults with autosomal dominant polycystic kidney disease compared with the general U.S. population. Am J Hypertens 17:1029–1034

    Article  PubMed  Google Scholar 

  14. Fick GM, Johnson AM, Hammond WS, Gabow PA (1995) Causes of death in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 5:2048–2056

    PubMed  CAS  Google Scholar 

  15. Torres VE, Donovan KA, Scicli G, Holley KE, Thibodeau SN, Carretero OA, Inagami T, McAteer JA, Johnson CM (1992) Synthesis of renin by tubulocystic epithelium in autosomal-dominant polycystic kidney disease. Kidney Int 42:364–373

    Article  PubMed  CAS  Google Scholar 

  16. Loghman-Adham M, Soto CE, Inagami T, Cassis L (2004) The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am J Physiol Ren Physiol 287:F775–F788

    Article  CAS  Google Scholar 

  17. Gabow PA (1990) Autosomal dominant polycystic kidney disease–more than a renal disease. Am J Kidney Dis 16:403–413

    PubMed  CAS  Google Scholar 

  18. Bae KT, Zhu F, Chapman AB, Torres VE, Grantham JJ, Guay-Woodford LM, Baumgarten DA, King BF Jr, Wetzel LH, Kenney PJ, Brummer ME, Bennett WM, Klahr S, Meyers CM, Zhang X, Thompson PA, Miller JP (2006) Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin J Am Soc Nephrol 1:64–69

    Article  PubMed  Google Scholar 

  19. Grantham JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359:1477–1485

    Article  PubMed  CAS  Google Scholar 

  20. Brun M, Maugey-Laulom B, Eurin D, Didier F, Avni EF (2004) Prenatal sonographic patterns in autosomal dominant polycystic kidney disease: a multicenter study. Ultrasound Obstet Gynecol 24:55–61

    Article  PubMed  CAS  Google Scholar 

  21. Fick-Brosnahan G, Johnson AM, Strain JD, Gabow PA (1999) Renal asymmetry in children with autosomal dominant polycystic kidney disease. Am J Kidney Dis 34:639–645

    Article  PubMed  CAS  Google Scholar 

  22. Schrier RW, Johnson AM, McFann K, Chapman AB (2003) The role of parental hypertension in the frequency and age of diagnosis of hypertension in offspring with autosomal-dominant polycystic kidney disease. Kidney Int 64:1792–1799

    Article  PubMed  Google Scholar 

  23. Rizk D, Chapman A (2008) Treatment of autosomal dominant polycystic kidney disease (ADPKD): the new horizon for children with ADPKD. Pediatr Nephrol 23:1029–1036

    Article  PubMed  Google Scholar 

  24. Sharp C, Johnson A, Gabow P (1998) Factors relating to urinary protein excretion in children with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 9:1908–1914

    PubMed  CAS  Google Scholar 

  25. Mekahli D, Woolf AS, Bockenhauer D (2010) Similar renal outcomes in children with ADPKD diagnosed by screening or presenting with symptoms. Pediatr Nephrol 25:2275–2282

    Article  PubMed  Google Scholar 

  26. Selistre L, de Souza V, Ranchin B, Hadj-Aissa A, Cochat P, Dubourg L (2012) Early renal abnormalities in children with postnatally diagnosed autosomal dominant polycystic kidney disease. Pediatr Nephrol 27:1589–1593

    Article  PubMed  Google Scholar 

  27. Bergmann C, Bruchle NO, Frank V, Rehder H, Zerres K (2008) Perinatal deaths in a family with autosomal dominant polycystic kidney disease and a PKD2 mutation. N Engl J Med 359:318–319

    Article  PubMed  CAS  Google Scholar 

  28. Michaud EJ, Yoder BK (2006) The primary cilium in cell signaling and cancer. Cancer Res 66:6463–6467

    Article  PubMed  CAS  Google Scholar 

  29. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529

    Article  PubMed  CAS  Google Scholar 

  30. Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM (2005) Functional coordination of intraflagellar transport motors. Nature 436:583–587

    Article  PubMed  CAS  Google Scholar 

  31. Qin H, Burnette DT, Bae YK, Forscher P, Barr MM, Rosenbaum JL (2005) Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr Biol 15:1695–1699

    Article  PubMed  CAS  Google Scholar 

  32. Rohatgi R, Snell WJ (2010) The ciliary membrane. Curr Opin Cell Biol 22:541–546

    Article  PubMed  CAS  Google Scholar 

  33. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439

    Article  PubMed  CAS  Google Scholar 

  34. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344

    Article  PubMed  CAS  Google Scholar 

  35. Wang X, Ward CJ, Harris PC, Torres VE (2010) Cyclic nucleotide signaling in polycystic kidney disease. Kidney Int 77:129–140

    Article  PubMed  CAS  Google Scholar 

  36. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  37. Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520

    Article  PubMed  Google Scholar 

  38. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  PubMed  CAS  Google Scholar 

  39. Xiao ZS, Quarles LD (2010) Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann N Y Acad Sci 1192:410–421

    Article  PubMed  CAS  Google Scholar 

  40. AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869

    Article  PubMed  CAS  Google Scholar 

  41. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171

    Article  PubMed  CAS  Google Scholar 

  42. Boulter C, Mulroy S, Webb S, Fleming S, Brindle K, Sandford R (2001) Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci U S A 98:12174–12179

    Article  PubMed  CAS  Google Scholar 

  43. Voets T, Nilius B (2009) TRPCs, GPCRs and the Bayliss effect. EMBO J 28:4–5

    Article  PubMed  CAS  Google Scholar 

  44. Brayden JE, Earley S, Nelson MT, Reading S (2008) Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol 35:1116–1120

    Article  PubMed  CAS  Google Scholar 

  45. Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E (2009) Polycystin-1 and −2 dosage regulates pressure sensing. Cell 139:587–596

    Article  PubMed  CAS  Google Scholar 

  46. Nilius B (2009) Polycystins under pressure. Cell 139:466–467

    Article  PubMed  CAS  Google Scholar 

  47. Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895

    Article  PubMed  CAS  Google Scholar 

  48. Xiao Z, Zhang S, Magenheimer BS, Luo J, Quarles LD (2008) Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem 283:12624–12634

    Article  PubMed  CAS  Google Scholar 

  49. Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, Bonewald L, Quarles LD (2011) Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J 25:2418–2432

    Article  PubMed  CAS  Google Scholar 

  50. Lu W, Shen X, Pavlova A, Lakkis M, Ward CJ, Pritchard L, Harris PC, Genest DR, Perez-Atayde AR, Zhou J (2001) Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet 10:2385–2396

    Article  PubMed  CAS  Google Scholar 

  51. Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, Klinger KW, Landes G, Germino GG (1998) Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 2:247–251

    Article  PubMed  CAS  Google Scholar 

  52. Cameron JR (1961) Bilateral “hereditary” polycystic disease of the kidneys associated with bilateral teratodactyly of the feet. Br J Urol 33:473–477

    Article  PubMed  CAS  Google Scholar 

  53. Pretorius DH, Lee ME, Manco-Johnson ML, Weingast GR, Sedman AB, Gabow PA (1987) Diagnosis of autosomal dominant polycystic kidney disease in utero and in the young infant. J Ultrasound Med 6:249–255

    PubMed  CAS  Google Scholar 

  54. Turco AE, Padovani EM, Chiaffoni GP, Peissel B, Rossetti S, Marcolongo A, Gammaro L, Maschio G, Pignatti PF (1993) Molecular genetic diagnosis of autosomal dominant polycystic kidney disease in a newborn with bilateral cystic kidneys detected prenatally and multiple skeletal malformations. J Med Genet 30:419–422

    Article  PubMed  CAS  Google Scholar 

  55. Ubara Y, Higa Y, Tagami T, Suwabe T, Nomura K, Kadoguchi K, Hoshino J, Sawa N, Katori H, Takemoto F, Kitajima I, Hara S, Takaichi K (2005) Pelvic insufficiency fracture related to autosomal dominant polycystic kidney disease. Am J Kidney Dis 46:e103–e111

    Article  PubMed  Google Scholar 

  56. Feather SA, Winyard PJ, Dodd S, Woolf AS (1997) Oral-facial-digital syndrome type 1 is another dominant polycystic kidney disease: clinical, radiological and histopathological features of a new kindred. Nephrol Dial Transplant 12:1354–1361

    Article  PubMed  CAS  Google Scholar 

  57. Feather SA, Woolf AS, Donnai D, Malcolm S, Winter RM (1997) The oral-facial-digital syndrome type 1 (OFD1), a cause of polycystic kidney disease and associated malformations, maps to Xp22.2–Xp22.3. Hum Mol Genet 6:1163–1167

    Article  PubMed  CAS  Google Scholar 

  58. Ramos FJ, Kaplan BS, Bellah RD, Zackai EH, Kaplan P (1998) Further evidence that the Hajdu-Cheney syndrome and the “serpentine fibula-polycystic kidney syndrome” are a single entity. Am J Med Genet 78:474–481

    Article  PubMed  CAS  Google Scholar 

  59. Isidor B, Le Merrer M, Exner GU, Pichon O, Thierry G, Guiochon-Mantel A, David A, Cormier-Daire V, Le Caignec C (2011) Serpentine fibula-polycystic kidney syndrome caused by truncating mutations in NOTCH2. Hum Mutat 32:1239–1242

    Article  PubMed  CAS  Google Scholar 

  60. Gray MJ, Kim CA, Bertola DR, Arantes PR, Stewart H, Simpson MA, Irving MD, Robertson SP (2012) Serpentine fibula polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome. Eur J Hum Genet 20:122–124

    Article  PubMed  CAS  Google Scholar 

  61. Anoop UR, Verma K, Narayanan K (2011) Primary cilia in the pathogenesis of dentigerous cyst: a new hypothesis based on role of primary cilia in autosomal dominant polycystic kidney disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111:608–617

    Article  PubMed  CAS  Google Scholar 

  62. Liu S, Quarles LD (2007) How fibroblast growth factor 23 works. J Am Soc Nephrol 18:1637–1647

    Article  PubMed  CAS  Google Scholar 

  63. Yamazaki Y, Tamada T, Kasai N, Urakawa I, Aono Y, Hasegawa H, Fujita T, Kuroki R, Yamashita T, Fukumoto S, Shimada T (2008) Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 23:1509–1518

    Article  PubMed  CAS  Google Scholar 

  64. Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF23. Bone 40:1565–1573

    Article  PubMed  CAS  Google Scholar 

  65. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  PubMed  CAS  Google Scholar 

  66. Razzaque MS (2009) Does FGF23 toxicity influence the outcome of chronic kidney disease? Nephrol Dial Transplant 24:4–7

    Article  PubMed  Google Scholar 

  67. Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, Westin G, Larsson TE (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131

    Article  PubMed  CAS  Google Scholar 

  68. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    PubMed  CAS  Google Scholar 

  69. Bacchetta J, Sea JL, Chun RF, Lisse TS, Wesseling-Perry K, Gales B, Adams JS, Salusky IB, Hewison M (2012) FGF23 inhibits extra-renal synthesis of 1,25-dihydroxyvitamin D in human monocytes. J Bone Miner Res 28:46–55

    Article  Google Scholar 

  70. Kurosu H, Kuro OM (2009) The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 299:72–78

    Article  PubMed  CAS  Google Scholar 

  71. Farrow EG, Davis SI, Summers LJ, White KE (2009) Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol 20:955–960

    Article  PubMed  CAS  Google Scholar 

  72. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    Article  PubMed  CAS  Google Scholar 

  73. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493

    Article  PubMed  CAS  Google Scholar 

  74. Juppner H, Wolf M, Salusky IB (2010) FGF-23: more than a regulator of renal phosphate handling? J Bone Miner Res 25:2091–2097

    Article  PubMed  CAS  Google Scholar 

  75. Prie D, Urena Torres P, Friedlander G (2009) Latest findings in phosphate homeostasis. Kidney Int 75:882–889

    Article  PubMed  CAS  Google Scholar 

  76. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M (2011) Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–2439

    Article  PubMed  CAS  Google Scholar 

  77. Mirza MA, Hansen T, Johansson L, Ahlstrom H, Larsson A, Lind L, Larsson TE (2009) Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transplant 24:3125–3131

    Article  PubMed  CAS  Google Scholar 

  78. Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205:385–390

    Article  PubMed  CAS  Google Scholar 

  79. Fukagawa M, Nii-Kono T, Kazama JJ (2005) Role of fibroblast growth factor 23 in health and in chronic kidney disease. Curr Opin Nephrol Hypertens 14:325–329

    Article  PubMed  CAS  Google Scholar 

  80. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592

    Article  PubMed  CAS  Google Scholar 

  81. Nakanishi S, Kazama JJ, Nii-Kono T, Omori K, Yamashita T, Fukumoto S, Gejyo F, Shigematsu T, Fukagawa M (2005) Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int 67:1171–1178

    Article  PubMed  CAS  Google Scholar 

  82. Srivaths PR, Goldstein SL, Silverstein DM, Krishnamurthy R, Brewer ED (2011) Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol 26:945–951

    Article  PubMed  Google Scholar 

  83. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    Article  PubMed  CAS  Google Scholar 

  84. Marsell R, Krajisnik T, Goransson H, Ohlsson C, Ljunggren O, Larsson TE, Jonsson KB (2008) Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol Dial Transplant 23:827–833

    Article  PubMed  Google Scholar 

  85. Bacchetta J, Dubourg L, Harambat J, Ranchin B, Abou-Jaoude P, Arnaud S, Carlier MC, Richard M, Cochat P (2010) The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J Clin Endocrinol Metab 95:1741–1748

    Article  PubMed  CAS  Google Scholar 

  86. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518

    Article  PubMed  CAS  Google Scholar 

  87. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS (2012) Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367:2407–2418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an educational grant from the Research Foundation Flanders (FWO), Belgium. The authors would like to thank Pierre Cochat and Bruno Ranchin (University of Lyon, France), Elena Levtchenko and Pieter Evenepoel (University Hospital of Leuven) and Humbert De Smedt (KU Leuven) for their helpful thoughts and comments.

Disclosure of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalila Mekahli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekahli, D., Bacchetta, J. From bone abnormalities to mineral metabolism dysregulation in autosomal dominant polycystic kidney disease. Pediatr Nephrol 28, 2089–2096 (2013). https://doi.org/10.1007/s00467-012-2384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2384-5

Keywords

Navigation