Skip to main content

Advertisement

Log in

Race-specific relationship of birth weight and renal function among healthy young children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Low birth weight is associated with diminished renal function. However, despite African Americans being at increased risk of low birth weight and chronic kidney disease, little is known about the association between birth weight and renal function in diverse groups. We examined racial differences in the relationship of birth weight and renal function among healthy young children.

Methods

Birth weight and serum creatinine data were available on 152 children (61.8% African American; 47.4% female) from a birth cohort. Estimated glomerular filtration rate (eGFR) was calculated using the bedside Schwartz equation and gender- and gestational-age-adjusted birth weight Z-scores using the US population as a reference. Race-specific linear regression models were fit to estimate the association between birth weight Z-score and eGFR.

Results

Mean age was 1.5 ± 1.3 years at first eGFR measurement. African Americans had lower eGFR than non-African Americans (median eGFR = 82 vs. 95 ml/min per 1.73 m2; p = 0.06). Birth weight was significantly and positively associated with eGFR among African American (p = 0.012) but not non-African American children (p = 0.33).

Conclusions

We provide, for the first time, evidence suggesting that birth weight is associated with renal function in African American children. Future work is needed to determine if prenatal programming helps explain racial disparities in adult health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417

    Article  PubMed  CAS  Google Scholar 

  2. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    PubMed  CAS  Google Scholar 

  3. Schreuder MF, Nyengaard JR, Fodor M, van Wijk JA, Delemarre-van de Waal HA (2005) Glomerular number and function are influenced by spontaneous and induced low birth weight in rats. J Am Soc Nephrol 16:2913–2919

    Article  PubMed  Google Scholar 

  4. Buffat C, Boubred F, Mondon F, Chelbi ST, Feuerstein JM, Lelievre-Pegorier M, Vaiman D, Simeoni U (2007) Kidney gene expression analysis in a rat model of intrauterine growth restriction reveals massive alterations of coagulation genes. Endocrinology 148:5549–5557

    Article  PubMed  CAS  Google Scholar 

  5. Hinchliffe SA, Lynch MR, Sargent PH, Howard CV, van Velzen D (1992) The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol 99:296–301

    Article  PubMed  CAS  Google Scholar 

  6. Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678

    Article  PubMed  CAS  Google Scholar 

  7. Hughson M, Farris AB III, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122

    Article  PubMed  Google Scholar 

  8. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261

    Article  PubMed  Google Scholar 

  9. Norris KC, Agodoa LY (2005) Unraveling the racial disparities associated with kidney disease. Kidney Int 68:914–924

    Article  PubMed  Google Scholar 

  10. U.S. Renal Data System, USRDS 2010 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2010

  11. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Mathews TJ, Kirmeyer S, Osterman MJ (2010) Births: final data for 2007. Natl Vital Stat Rep 58:1–85

    PubMed  Google Scholar 

  12. Institute of Medicine (1985) Preventing Low Birthweight Summary. National Academy Press, Washington, DC

    Google Scholar 

  13. Keijzer-Veen MG, Kleinveld HA, Lequin MH, Dekker FW, Nauta J, de Rijke YB, van der Heijden BJ (2007) Renal function and size at young adult age after intrauterine growth restriction and very premature birth. Am J Kidney Dis 50:542–551

    Article  PubMed  Google Scholar 

  14. Keijzer-Veen MG, Schrevel M, Finken MJ, Dekker FW, Nauta J, Hille ET, Frolich M, van der Heijden BJ (2005) Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J Am Soc Nephrol 16:2762–2768

    Article  PubMed  CAS  Google Scholar 

  15. Hallan S, Euser AM, Irgens LM, Finken MJ, Holmen J, Dekker FW (2008) Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trondelag Health (HUNT 2) Study. Am J Kidney Dis 51:10–20

    Article  PubMed  Google Scholar 

  16. Kistner A, Celsi G, Vanpee M, Jacobson SH (2000) Increased blood pressure but normal renal function in adult women born preterm. Pediatr Nephrol 15:215–220

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez-Soriano J, Aguirre M, Oliveros R, Vallo A (2005) Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol 20:579–584

    Article  PubMed  Google Scholar 

  18. Schmidt IM, Chellakooty M, Boisen KA, Damgaard IN, Mau KC, Olgaard K, Main KM (2005) Impaired kidney growth in low-birth-weight children: distinct effects of maturity and weight for gestational age. Kidney Int 68:731–740

    Article  PubMed  Google Scholar 

  19. Lopez-Bermejo A, Sitjar C, Cabacas A, Vazquez-Ruiz M, Garcia-Gonzalez MM, Mora C, Soriano P, Calvo M, Ibanez L (2008) Prenatal programming of renal function: the estimated glomerular filtration rate is influenced by size at birth in apparently healthy children. Pediatr Res 64:97–99

    Article  PubMed  Google Scholar 

  20. Koulouridis E, Georgalidis K, Kostimpa I, Koulouridis I, Krokida A, Houliara D (2010) Metabolic syndrome risk factors and estimated glomerular filtration rate among children and adolescents. Pediatr Nephrol 25:491–498

    Article  PubMed  Google Scholar 

  21. Simonetti GD, Raio L, Surbek D, Nelle M, Frey FJ, Mohaupt MG (2008) Salt sensitivity of children with low birth weight. Hypertension 52:625–630

    Article  PubMed  CAS  Google Scholar 

  22. Havstad S, Wegienka G, Zoratti EM, Lynch SV, Boushey HA, Nicholas C, Ownby DR, Johnson CC (2011) Effect of prenatal indoor pet exposure on the trajectory of total IgE levels in early childhood. J Allergy Clin Immunol 128:880–885

    Article  PubMed  CAS  Google Scholar 

  23. Ownby DR, Peterson EL, Williams LK, Zoratti EM, Wegienka GR, Woodcroft KJ, Joseph CL, Johnson CC (2010) Variation of dust endotoxin concentrations by location and time within homes of young children. Pediatr Allergy Immunol 21:533–540

    Article  PubMed  Google Scholar 

  24. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  Google Scholar 

  25. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843

    Article  PubMed  Google Scholar 

  26. Oken E, Kleinman KP, Rich-Edwards J, Gillman MW (2003) A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr 3:6

    Article  PubMed  Google Scholar 

  27. Diggle PJ, Liang K-Y, Zeger SL (1994) Analysis of Longitudinal Data. Oxford University Press, Oxford

    Google Scholar 

  28. Ceriotti F, Boyd JC, Klein G, Henny J, Queralto J, Kairisto V, Panteghini M (2008) Reference intervals for serum creatinine concentrations: assessment of available data for global application. Clin Chem 54:559–566

    Article  PubMed  CAS  Google Scholar 

  29. Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    PubMed  CAS  Google Scholar 

  31. Hogg RJ, Furth S, Lemley KV, Portman R, Schwartz GJ, Coresh J, Balk E, Lau J, Levin A, Kausz AT, Eknoyan G, Levey AS (2003) National Kidney Foundation's Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 111:1416–1421

    Article  PubMed  Google Scholar 

  32. Staples A, LeBlond R, Watkins S, Wong C, Brandt J (2010) Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol 25:2321–2326

    Article  PubMed  Google Scholar 

  33. Patel UD (2010) Fetal origins of renal disparities. Semin Nephrol 30:42–50

    Article  PubMed  Google Scholar 

  34. Hughson MD, Gobe GC, Hoy WE, Manning RD Jr, Douglas-Denton R, Bertram JF (2008) Associations of glomerular number and birth weight with clinicopathological features of African Americans and whites. Am J Kidney Dis 52:18–28

    Article  PubMed  Google Scholar 

  35. Luyckx VA, Brenner BM (2005) Low birth weight, nephron number, and kidney disease. Kidney Int Suppl, S68–S77

  36. Di Zazzo G, Stringini G, Matteucci MC, Muraca M, Malena S, Emma F (2011) Serum creatinine levels are significantly influenced by renal size in the normal pediatric population. Clin J Am Soc Nephrol 6:107–113

    Article  PubMed  Google Scholar 

  37. Zandi-Nejad K, Luyckx VA, Brenner BM (2006) Adult hypertension and kidney disease: the role of fetal programming. Hypertension 47:502–508

    Article  PubMed  CAS  Google Scholar 

  38. Ingelfinger JR (2004) Pathogenesis of perinatal programming. Curr Opin Nephrol Hypertens 13:459–464

    Article  PubMed  CAS  Google Scholar 

  39. Targonski P, Jacobsen SJ, Weston SA, Leibson CL, Pfeifer E, Nemetz P, Roger VL (2001) Referral to autopsy: effect of antemortem cardiovascular disease: a population-based study in Olmsted County, Minnesota. Ann Epidemiol 11:264–270

    Article  PubMed  CAS  Google Scholar 

  40. Taal HR, Geelhoed JJ, Steegers EA, Hofman A, Moll HA, Lequin M, van der Heijden AJ, Jaddoe VW (2011) Maternal smoking during pregnancy and kidney volume in the offspring: the Generation R Study. Pediatr Nephrol 26:1275–1283

    Article  PubMed  Google Scholar 

  41. Peters RM (2008) High blood pressure in pregnancy. Nurs Womens Health 12:410–421

    Article  PubMed  Google Scholar 

  42. McDonald SD, Han Z, Walsh MW, Gerstein HC, Devereaux PJ (2010) Kidney disease after preeclampsia: a systematic review and meta-analysis. Am J Kidney Dis 55:1026–1039

    Article  PubMed  Google Scholar 

  43. Hemachandra AH, Klebanoff MA, Furth SL (2006) Racial disparities in the association between birth weight in the term infant and blood pressure at age 7 years: results from the collaborative perinatal project. J Am Soc Nephrol 17:2576–2581

    Article  PubMed  Google Scholar 

  44. Rostand SG, Cliver SP, Goldenberg RL (2005) Racial disparities in the association of foetal growth retardation to childhood blood pressure. Nephrol Dial Transplant 20:1592–1597

    Article  PubMed  Google Scholar 

  45. Cruickshank JK, Mzayek F, Liu L, Kieltyka L, Sherwin R, Webber LS, Srinavasan SR, Berenson GS (2005) Origins of the "black/white" difference in blood pressure: roles of birth weight, postnatal growth, early blood pressure, and adolescent body size: the Bogalusa heart study. Circulation 111:1932–1937

    Article  PubMed  CAS  Google Scholar 

  46. Brenner BM (1985) Nephron adaptation to renal injury or ablation. Am J Physiol 249:F324–F337

    PubMed  CAS  Google Scholar 

  47. Schmidt IM, Damgaard IN, Boisen KA, Mau C, Chellakooty M, Olgaard K, Main KM (2004) Increased kidney growth in formula-fed versus breast-fed healthy infants. Pediatr Nephrol 19:1137–1144

    PubMed  Google Scholar 

  48. MMWR (2010) Racial and ethnic differences in breastfeeding initiation and duration, by state. MMWR Morb Mortal Wkly Rep 59:327–334

    Google Scholar 

  49. Ku CY, Gower BA, Nagy TR, Goran MI (1998) Relationships between dietary fat, body fat, and serum lipid profile in prepubertal children. Obes Res 6:400–407

    PubMed  CAS  Google Scholar 

  50. Thalange NK, Foster PJ, Gill MS, Price DA, Clayton PE (1996) Model of normal prepubertal growth. Arch Dis Child 75:427–431

    Article  PubMed  CAS  Google Scholar 

  51. Jones CA, McQuillan GM, Kusek JW, Eberhardt MS, Herman WH, Coresh J, Salive M, Jones CP, Agodoa LY (1998) Serum creatinine levels in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis 32:992–999

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (R01 AI050681) and the Fund for Henry Ford Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea E. Cassidy-Bushrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassidy-Bushrow, A.E., Wegienka, G., Barone, C.J. et al. Race-specific relationship of birth weight and renal function among healthy young children. Pediatr Nephrol 27, 1317–1323 (2012). https://doi.org/10.1007/s00467-012-2136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2136-6

Keywords

Navigation