Skip to main content
Log in

Wnt signaling and renal medulla formation

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The renal medulla, the inner compartment of the metanephric kidney, plays vital roles in the regulation of body water, electrolyte homeostasis, and systemic blood pressure. It is composed of the loops-of-Henle, the medullary collecting ducts, the vasa recta, and the medullary interstitium. Its epithelial and endothelial components display ordered spatial organization. This organization serves as the structural basis for its function in urine concentration. The urine concentration ability of a renal medulla is also related to its length among species. In this review, the current understanding of the molecular and cellular mechanisms underlying renal medulla formation (elongation) is summarized, with a focus on the role of Wnt signaling in this developmental process. Renal medulla blunting and effacement is a common symptom of many renal and urological destructions. The knowledge in renal medulla formation should assist efforts in repair and regeneration of a damaged renal medulla, so to improve renal physiology in diseased situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pannabecker TL, Dantzler WH, Layton HE, Layton AT (2008) Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol Renal Physiol 295:F1271–F1285

    Article  CAS  Google Scholar 

  2. Layton AT, Layton HE, Dantzler WH, Pannabecker TL (2009) The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiol (Bethesda) 24:250–256

    CAS  Google Scholar 

  3. Kriz W (1981) Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 241:R3–R16

    Article  CAS  Google Scholar 

  4. Harold C (2009) Renal and urological disorders. In: Professional guide to diseases. 9th Ed. Philadelphia, PA: Lippincott Williams & Wilkins, pp 403–404

  5. Choyke PL, Siegel MJ, Craft AW, Green DM, DeBaun MR (1999) Screening for Wilms tumor in children with Beckwith–Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol 32:196–200

    Article  CAS  Google Scholar 

  6. Beckwith JB (1969) Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyerplastic viseromegaly. In: Bergsma D (ed) Birth defects: Original Article Series. The National Foundation, pp 188–196

  7. Weksberg R, Shuman C, Smith AC (2005) Beckwith–Wiedemann syndrome. Am J Med Genet C Semin Med Genet 137C:12–23

    Article  Google Scholar 

  8. Risdon RA (1992) Development, developmental defects, and cystic diseases of the kidney. In: Heptinstall RH (ed) Pathology of the kidney. Little Brown and Company, Boston, pp 93–167

    Google Scholar 

  9. Cebrian C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231:601–608

    Article  Google Scholar 

  10. Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136:161–171

    Article  CAS  Google Scholar 

  11. Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753

    CAS  Google Scholar 

  12. Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T, Hogan BLM, Ichikawa I (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954

    Article  CAS  Google Scholar 

  13. Takahashi N, Lopez ML, Cowhig JE Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132

    Article  Google Scholar 

  14. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 74:953–965

    CAS  Google Scholar 

  15. Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501

    Article  CAS  Google Scholar 

  16. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760

    Article  CAS  Google Scholar 

  17. Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695

    Article  CAS  Google Scholar 

  18. Miyazaki Y, Tsuchida S, Nishimura H, Pope JC, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497

    Article  CAS  Google Scholar 

  19. Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol Renal Physiol 285:F199–F207

    Article  CAS  Google Scholar 

  20. Yosypiv IV (2009) Renin-angiotensin system-growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis. Pediatr Nephrol 24:1113–1120

    Article  Google Scholar 

  21. Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, Chen F (2004) Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 113:1051–1058

    Article  CAS  Google Scholar 

  22. Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND (2008) BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 19:117–124

    Article  CAS  Google Scholar 

  23. Sparrow DB, Boyle SC, Sams RS, Mazuruk B, Zhang L, Moeckel GW, Dunwoodie SL, de Caestecker MP (2009) Placental insufficiency associated with loss of Cited1 causes renal medullary dysplasia. J Am Soc Nephrol 20:777–786

    Article  CAS  Google Scholar 

  24. Cano-Gauci DF, Song HH, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Lockwood GA, Rosenblum ND, Filmus J (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND (2001) Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol 231:31–46

    Article  CAS  Google Scholar 

  26. Zhang Z, Pascuet E, Hueber PA, Chu L, Bichet DG, Lee TC, Threadgill DW, Goodyear P (2010) Targeted inactivation of EGF receptor inhibits renal collecting duct development and function. J Am Soc Nephrol 21:573–578

    Article  CAS  Google Scholar 

  27. Berry R, Harewood L, Pei L, Fisher M, Brownstein D, Ross A, Alaynick WA, Moss J, Hastie ND, Hohenstein P, Davies JA, Evans RM, Fitzpatrick DR (2010) Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla. Hum Mol Genet 20:917–926

    Article  Google Scholar 

  28. Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169

    Article  CAS  Google Scholar 

  29. Goldman M, Smith A, Shuman C, Caluseriu O, Wei C, Steele L, Ray P, Sadowski P, Squire J, Weksberg R, Rosenblum ND (2002) Renal abnormalities in Beckwith–Wiedemann syndrome are associated with 11p15.5 uniparental disomy. J Am Soc Nephrol 13:2077–2084

    Article  CAS  Google Scholar 

  30. Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 387:151–158

    Article  CAS  Google Scholar 

  31. Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41:793–799

    Article  CAS  Google Scholar 

  32. Wang Z, Shu W, Lu MM, Morrisey EE (2005) Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol Cell Biol 25:5022–5030

    Article  CAS  Google Scholar 

  33. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42

    Article  CAS  Google Scholar 

  34. Pietila I, Ellwanger K, Railo A, Jokela T, Del Barco Barrantes I, Shan J, Niehrs C, Vainio SJ (2011) Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling. Dev Biol doi:https://doi.org/10.1016/j.ydbio.2011.02.019

  35. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Frank Costantini for the Hoxb7/Myr-Venus mice and the anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J. Wnt signaling and renal medulla formation. Pediatr Nephrol 26, 1553–1557 (2011). https://doi.org/10.1007/s00467-011-1888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1888-8

Keywords

Navigation