Skip to main content

Advertisement

Log in

Solutions for peritoneal dialysis in children: recommendations by the European Pediatric Dialysis Working Group

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The purpose of this article is to provide recommendations on the choice of peritoneal dialysis (PD) fluids in children by the European Pediatric Dialysis Working Group. The literature on experimental and clinical studies with PD solutions in children and adults was analyzed together with consensus discussions within the group. A grading was performed based on the international KDIGO nomenclature and methods. The lowest glucose concentration possible should be used. Icodextrin may be applied once daily during the long dwell, in particular in children with insufficient ultrafiltration. Infants on PD are at risk of ultrafiltration-associated sodium depletion, while anuric adolescents may have water and salt overload. Hence, the sodium chloride balance needs to be closely monitored. In growing children, the calcium balance should be positive and dialysate calcium adapted according to individual needs. Limited clinical experience with amino acid-based PD fluids in children suggests good tolerability. The anabolic effect, however, is small; adequate enteral nutrition is preferred. CPD fluids with reduced glucose degradation products (GDP) content reduce local and systemic toxicity and should be preferred whenever possible. Correction of metabolic acidosis is superior with pH neutral bicarbonate-based fluids compared with single-chamber, acidic, lactate-based solutions. Prospective comparisons of low GDP solutions with different buffer compositions are still few, and firm recommendations cannot yet be given, except when hepatic lactate metabolism is severely compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT (2002) Peritoneal Biopsy Study Group Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13:470–479

    PubMed  Google Scholar 

  2. Yoshino A, Honda M, Fukuda M, Araki Y, Hataya H, Sakazume S, Tanaka Y, Kawamura K, Murai T, Kamiyama Y (2001) Changes in peritoneal equilibration test values during long-term peritoneal dialysis in peritonitis-free children. Perit Dial Int 21:180–185

    CAS  PubMed  Google Scholar 

  3. Schmitt CP, von Heyl D, Rieger S, Arbeiter K, Bonzel KE, Fischbach M, Misselwitz J, Pieper AK, Schaefer F, for the Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS) (2007) Reduced systemic advanced glycation end products in children receiving peritoneal dialysis with low glucose degradation product content. Nephrol Dial Transplant 22:2038–2044

    CAS  PubMed  Google Scholar 

  4. Zeier M, Schwenger V, Deppisch R, Haug U, Weigel K, Bahner U, Wanner C, Schneider H, Henle T, Ritz E (2003) Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int 63:298–305

    CAS  PubMed  Google Scholar 

  5. Schaefer F, Klaus G, Müller-Wiefel DE, Mehls O, Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS) (1999) Current practice of peritoneal dialysis in children: results of a longitudinal survey. Perit Dial Int 19 [Suppl 2]:S445–S449

    PubMed  Google Scholar 

  6. Frischmann M, Spitzer J, Fünfrocken M, Mittelmaier S, Deckert M, Fichert T, Pischetsrieder M (2009) Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomed Chromatogr 23:843–851

    CAS  PubMed  Google Scholar 

  7. Erixon M, Wieslander A, Lindén T, Carlsson O, Forsbäck G, Svensson E, Jönsson JA, Kjellstrand P (2006) How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 26:490–497

    CAS  PubMed  Google Scholar 

  8. Schröder CH, European Paediatric Peritoneal Dialysis Working Group (2001) The choice of dialysis solutions in pediatric chronic peritoneal dialysis: guidelines by an ad hoc European committee. Perit Dial Int 21:568–574

    PubMed  Google Scholar 

  9. Uhlig K, Macleod A, Craig J, Lau J, Levey AS, Levin A, Moist L, Steinberg E, Walker R, Wanner C, Lameire N, Eknoyan G (2001) Grading evidence and recommendations for clinical practice guidelines in nephrology. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 70:2058–2065

    CAS  PubMed  Google Scholar 

  10. Davies SJ, Phillips L, Naish PF, Russell GI (2001) Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 12:1046–1051

    CAS  PubMed  Google Scholar 

  11. Fischbach M, Desprez P, Donnars F, Hamel G, Geisert J (1994) Optimization of CCPD prescription in children using peritoneal equilibration test. Adv Perit Dial 10:307–309

    CAS  PubMed  Google Scholar 

  12. Hölttä T, Happonen JM, Rönnholm K, Fyhrquist F, Holmberg C (2001) Hypertension, cardiac state, and the role of volume overload during peritoneal dialysis. Pediatr Nephrol 16:324–331

    PubMed  Google Scholar 

  13. Groothoff J, Gruppen M, de Groot E, Offringa M (2005) Cardiovascular disease as a late complication of end-stage renal disease in children. Perit Dial Int 25 [Suppl 3]:S123–S126

    PubMed  Google Scholar 

  14. Schmitt CP, Haraldsson B, Doetschmann R, Zimmering M, Greiner C, Böswald M, Klaus G, Passlick-Deetjen J, Schaefer F (2002) Effects of pH-neutral, bicarbonate-buffered dialysis fluid on peritoneal transport kinetics in children. Kidney Int 61:1527–1536

    PubMed  Google Scholar 

  15. Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD (1995) Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int 47:282–293

    CAS  PubMed  Google Scholar 

  16. Breborowicz A, Rodela H, Martis L, Oreopoulos DG (1996) Intracellular glutathione in human peritoneal mesothelial cells exposed in vitro to dialysis fluid. Int J Artif Organs 19:268–275

    CAS  PubMed  Google Scholar 

  17. Zareie M, Hekking LH, Welten AG, Driesprong BA, Schadee-Eestermans IL, Faict D, Leyssens A, Schalkwijk CG, Beelen RH, Ter Wee PM, Van Den Born J (2003) Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant 18:2629–2637

    CAS  PubMed  Google Scholar 

  18. Plum J, Razeghi P, Lordnejad RM, Perniok A, Fleisch M, Fussholler A, Schneider M, Grabensee B (2001) Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells. Am J Kidney Dis 38:867–875

    CAS  PubMed  Google Scholar 

  19. Ogata S, Mori M, Tatsukawa Y, Kiribayashi K, Yorioka N (2006) Expression of vascular endothelial growth factor, fibroblast growth factor, and lactate dehydrogenase by human peritoneal mesothelial cells in solutions with lactate or bicarbonate or both. Adv Perit Dial 22:37–40

    CAS  PubMed  Google Scholar 

  20. Thongboonkerd V, Lumlertgul D, Supajatura V (2001) Better correction of metabolic acidosis, blood pressure control, and phagocytosis with bicarbonate compared to lactate solution in acute peritoneal dialysis. Artif Organs 25:99–108

    CAS  PubMed  Google Scholar 

  21. Kierdorf HP, Leue C, Arns S (1999) Lactate- or bicarbonate-buffered solutions in continuous extracorporeal renal replacement therapies. Kidney Int Suppl 72:S32–S36

    CAS  Google Scholar 

  22. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 14:2632–2638

    PubMed  Google Scholar 

  23. Otte K, Gonzalez MT, Bajo MA, del Peso G, Heaf J, Garcia Erauzkin G, Sanchez Tomero JA, Dieperink H, Povlsen J, Hopwood AM, Divino Filho JC, Faict D (2003) Clinical experience with a new bicarbonate (25 mmol/L)/lactate (10 mmol/L) peritoneal dialysis solution. Perit Dial Int 23:138–145

    CAS  PubMed  Google Scholar 

  24. Feriani M, Carobi C, La Greca G, Buoncristiani U, Passlick-Deetjen J (1997) Clinical experience with a 39 mmol/L bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int 17:17–21

    CAS  PubMed  Google Scholar 

  25. Mortier S, De Vriese AS, Van de Voorde J, Schaub TP, Passlick-Deetjen J, Lameire NH (2002) Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, and glucose degradation products. J Am Soc Nephrol 13:480–489

    CAS  PubMed  Google Scholar 

  26. Mactier RA, Sprosen TS, Gokal R, Williams PF, Lindbergh M, Naik RB, Wrege U, Gröntoft KC, Larsson R, Berglund J, Tranaeus AP, Faict D (1998) Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int 53:1061–1067

    CAS  PubMed  Google Scholar 

  27. Fischbach M, Terzic J, Chauvé S, Laugel V, Muller A, Haraldsson B (2004) Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrol Dial Transplant 19:925–932

    CAS  PubMed  Google Scholar 

  28. Fischbach M (1996) Peritoneal dialysis prescription for neonates. Perit Dial Int 16 [Suppl 1]:512–514

    Google Scholar 

  29. Nakayama M, Kasai K, Imai H, RM-280 Study Group (2009) Novel low Na peritoneal dialysis solutions designed to optimize Na gap of effluent: kinetics of Na and water removal. Perit Dial Int 29:528–535

    CAS  PubMed  Google Scholar 

  30. Davies S, Carlsson O, Simonsen O, Johansson AC, Venturoli D, Ledebo I, Wieslander A, Chan C, Rippe B (2009) The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transplant 24:1609–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Edefonti A, Mastrangelo A, Paglialonga F (2009) Assessment and monitoring of nutrition status in pediatric peritoneal dialysis patients. Perit Dial Int 29 [Suppl 2]:S176–S179

    PubMed  Google Scholar 

  32. Wühl E, Fusch C, Schärer K, Mehls O, Schaefer F (1996) Assessment of total body water in paediatric patients on dialysis. Nephrol Dial Transplant 11(1):75–80

    PubMed  Google Scholar 

  33. Bakkaloglu SA, Wesseling-Perry K, Pereira RC, Gales B, Wang HJ, Elashoff RM, Salusky IB (2010) Value of the New Bone Classification System in Pediatric Renal Osteodystrophy. Clin J Am Soc Nephrol 5(10):1860–1866

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Google Scholar 

  35. Rippe B, Levin L (1998) Should dialysate calcium be varied in proportion to the amount of ultrafiltration in peritoneal dialysis dwells? Directions from a computer simulation. Perit Dial Int 199818:474–477

    Google Scholar 

  36. Eddington H, Hurst H, Ramli MT, Speake M, Hutchison AJ (2009) Calcium and magnesium flux in automated peritoneal dialysis. Perit Dial Int 29:536–541

    CAS  PubMed  Google Scholar 

  37. Weinreich T, Passlick-Deetjen J, Ritz E, The Peritoneal Dialysis Multicenter Study Group (1995) Low dialysate calcium in continuous ambulatory peritoneal dialysis: a randomized controlled multicenter trial. Am J Kidney Dis 25:452–460

    CAS  PubMed  Google Scholar 

  38. Klaus G, Watson A, Edefonti A, Fischbach M, Rönnholm K, Schaefer F, Simkova E, Stefanidis CJ, Strazdins V, Vande Walle J, Schröder C, Zurowska A, Ekim M, European Pediatric Dialysis Working Group (EPDWG) (2006) Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol 21:151–159

    CAS  Google Scholar 

  39. Ejaz AA, McShane AP, Gandhi VC, Leehey DJ, Ing TS (1995) Hypomagnesemia in continuous ambulatory peritoneal dialysis patients dialyzed with a low-magnesium peritoneal dialysis solution. Perit Dial Int 15:61–64

    CAS  PubMed  Google Scholar 

  40. Wei M, Esbaei K, Bargman J, Oreopoulos DG (2006) Relationship between serum magnesium, parathyroid hormone, and vascular calcification in patients on dialysis: a literature review. Perit Dial Int 26:366–373

    CAS  PubMed  Google Scholar 

  41. Navarro-González JF, Mora-Fernández C, García-Pérez J (2009) Clinical implications of disordered magnesium homeostasis in chronic renal failure and dialysis. Semin Dial 22:37–44

    PubMed  Google Scholar 

  42. Witowski J, Korybalska K, Wisniewska J, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jörres A (2000) Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 11:729–739

    CAS  PubMed  Google Scholar 

  43. Inagi R, Miyata T, Yamamoto T, Suzuki D, Urakami K, Saito A, van Ypersele de Strihou C, Kurokawa K (1999) Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett 17(463):260–264

    Google Scholar 

  44. Jonasson P, Braide M (2000) Kinetics and dose response of the effects of heated glucose peritoneal dialysis fluids on the respiratory burst of rat peritoneal leukocytes. ASAIO J 46:469–473

    CAS  PubMed  Google Scholar 

  45. Witowski J, Jorres A (2009) Peritoneal dialysis: a biological membrane with a nonbiological fluid. Contrib Nephrol 163:27–34

    CAS  PubMed  Google Scholar 

  46. Kazancioglu R (2009) Peritoneal defense mechanisms—the effects of new peritoneal dialysis solutions. Perit Dial Int 29 [Suppl 2]:S198–S201

    CAS  PubMed  Google Scholar 

  47. Shaw S, Akyol M, Bell J, Briggs JD, Dominiczak MH (1998) Effects of continuous ambulatory peritoneal dialysis and kidney transplantation on advanced glycation endproducts in the skin and peritoneum. Cell Mol Biol (Noisy-le-grand) 44:1061–1068

    CAS  Google Scholar 

  48. Han SH, Ahn SV, Yun JY, Tranaeus A, Han DS (2009) Mortality and technique failure in peritoneal dialysis patients using advanced peritoneal dialysis solutions. Am J Kidney Dis 54:711–720

    PubMed  Google Scholar 

  49. Lee HY, Choi HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Kim MJ, Shin SK (2006) Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant 21:2893–2899

    CAS  PubMed  Google Scholar 

  50. Topley N, Kaur D, Petersen MM, Jörres A, Passlick-Deetjen J, Coles GA, Williams JD (1996) Biocompatibility of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int 49:1447–1456

    CAS  PubMed  Google Scholar 

  51. Do JY, Kim YL, Park JW, Chang KA, Lee SH, Ryu DH, Kim CD, Park SH, Yoon KW (2008) The association between the vascular endothelial growth factor-to-cancer antigen 125 ratio in peritoneal dialysis effluent and the epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis. Perit Dial Int 28 [Suppl 3]:S101–S106

    PubMed  Google Scholar 

  52. Cooker LA, Luneburg P, Holmes CJ, Jones S, Topley N (2001) Bicarbonate/Lactate Study Group. Interleukin-6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit Dial Int 21[Suppl 3]:102–107

    Google Scholar 

  53. Mortier S, Lameire NH, De Vriese AS (2004) The effects of peritoneal dialysis solutions on peritoneal host defense. Perit Dial Int 24:123–138

    CAS  PubMed  Google Scholar 

  54. Mortier S, Faict D, Gericke M, Lameire N, De Vriese A (2005) Effects of new peritoneal dialysis solutions on leukocyte recruitment in the rat peritoneal membrane. Nephron Exp Nephrol 101:e139–e145

    PubMed  Google Scholar 

  55. Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS (2004) Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int 66:1257–1265

    CAS  PubMed  Google Scholar 

  56. Mortier S, Faict D, Lameire NH, De Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67:1559–1665

    CAS  PubMed  Google Scholar 

  57. Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J, Euro Balance Trial Group (2004) The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66:408–418

    PubMed  Google Scholar 

  58. Weiss L, Stegmayr B, Malmsten G, Tejde M, Hadimeri H, Siegert CE, Ahlmén J, Larsson R, Ingman B, Simonsen O, van Hamersvelt HW, Johansson AC, Hylander B, Mayr M, Nilsson PH, Andersson PO, De los Ríos T (2009) Biocompatibility and tolerability of a purely bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int 29:647–55

    CAS  PubMed  Google Scholar 

  59. Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen FD, Bro S, Friedberg M, Wieslander A (2001) Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 59:348–357

    CAS  PubMed  Google Scholar 

  60. Tranaeus A, The Bicarbonate/Lactate Study Group (2000) A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution—clinical benefits. Perit Dial Int 20:516–523

    CAS  PubMed  Google Scholar 

  61. Montenegro J, Saracho RM, Martínez IM, Muñoz RI, Ocharan JJ, Valladares E (2006) Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions. Perit Dial Int 26:89–94

    CAS  PubMed  Google Scholar 

  62. Kim SG, Kim S, Hwang YH, Kim K, Oh JE, Chung W, Oh KH, Kim HJ, Ahn C, Group Korean Balnet Study (2008) Could solutions low in glucose degradation products preserve residual renal function in incident peritoneal dialysis patients? A 1-year multicenter prospective randomized controlled trial (Balnet Study). Perit Dial Int 28 [Suppl 3]:S117–S122

    CAS  PubMed  Google Scholar 

  63. Haag-Weber M, Krämer R, Haake R, Islam MS, Prischl F, Haug U, Nabut JL, Deppisch R, on behalf of the DIUREST Study Group (2010) Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol Dial Transplant 25:2288–2296

    CAS  PubMed  Google Scholar 

  64. Müller-Krebs S, Kihm LP, Zeier B, Gross ML, Deppisch R, Wieslander A, Henle T, Penndorf I, Oh J, Reiser J, Nawroth PP, Zeier M, Schwenger V (2008) Renal toxicity mediated by glucose degradation products in a rat model of advanced renal failure. Eur J Clin Invest 38:296–305

    PubMed  Google Scholar 

  65. Ho-dac-Pannekeet MM, Weiss MF, de Waart DR, Erhard P, Hiralall JK, Krediet RT (1999) Analysis of non enzymatic glycosylation in vivo: impact of different dialysis solutions. Perit Dial Int 19 [Suppl 2]:68–74

    Google Scholar 

  66. Posthuma N, ter Wee PM, Niessen H, Donker AJ, Verbrugh HA, Schalkwijk CG (2001) Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Perit Dial Int 21:43–51

    CAS  PubMed  Google Scholar 

  67. Montenegro J, Saracho R, Gallardo I, Martínez I, Muñoz R, Quintanilla N (2007) Use of pure bicarbonate-buffered peritoneal dialysis fluid reduces the incidence of CAPD peritonitis. Nephrol Dial Transplant 22:1703–1708

    CAS  PubMed  Google Scholar 

  68. Furkert J, Zeier M, Schwenger V (2008) Effects of peritoneal dialysis solutions low in GDPs on peritonitis and exit-site infection rates. Perit Dial Int 28(6):637–640

    PubMed  Google Scholar 

  69. Moberly JB, Mujais S, Gehr T, Hamburger R, Sprague S, Kucharski A, Reynolds R, Ogrinc F, Martis L, Wolfson M (2002) Pharmacokinetics of icodextrin in peritoneal dialysis patients. Kidney Int Suppl 81:S23–S33

    CAS  Google Scholar 

  70. Canepa A, Verrina E, Perfumo F (2008) Use of new peritoneal dialysis solutions in children. Kidney Int Suppl 108:S137–S144

    CAS  Google Scholar 

  71. Rusthoven E, Krediet RT, Willems HL, Monnens LA, Schröder CH (2004) Peritoneal transport characteristics with glucose polymer-based dialysis fluid in children. J Am Soc Nephrol 15:2940–7

    CAS  PubMed  Google Scholar 

  72. Posthuma N, ter Wee PM, Donker AJ, Oe PL, Peers EM, Verbrugh HA, The Dextrin in APD in Amsterdam (DIANA) Group (2000) Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. Perit Dial Int 20 [Suppl 2]:S106–S113

    PubMed  Google Scholar 

  73. Dart A, Feber J, Wong H, Filler G (2005) Icodextrin re-absorption varies with age in children on automated peritoneal dialysis. Pediatr Nephrol 20:683–685

    PubMed  Google Scholar 

  74. Michallat AC, Dheu C, Loichot C, Danner S, Fischbach M (2005) Long daytime exchange in children on continuous cycling peritoneal dialysis: preservation of drained volume because of icodextrin use. Adv Perit Dial 21:195–199

    CAS  PubMed  Google Scholar 

  75. Davies SJ, Woodrow G, Donovan K, Plum J, Williams P, Johansson AC, Bosselmann HP, Heimbürger O, Simonsen O, Davenport A, Tranaeus A, Divino Filho JC (2003) Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 14:2338–2344

    CAS  PubMed  Google Scholar 

  76. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, Nash K, Sorkin M, Mujais S (2005) Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol 16:546–554

    CAS  PubMed  Google Scholar 

  77. Konings CJ, Kooman JP, Schonck M, Gladziwa U, Wirtz J, van den Wall Bake AW, Gerlag PG, Hoorntje SJ, Wolters J, van der Sande FM, Leunissen KM (2003) Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 63:1556–1563

    CAS  PubMed  Google Scholar 

  78. Woodrow G, Oldroyd B, Stables G, Gibson J, Turney JH, Brownjohn AM (2000) Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant 15:862–866

    CAS  PubMed  Google Scholar 

  79. Bredie SJ, Bosch FH, Demacker PN, Stalenhoef AF, van Leusen R (2001) Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Perit Dial Int 21:275–281

    CAS  PubMed  Google Scholar 

  80. Babazono T, Nakamoto H, Kasai K, Kuriyama S, Sugimoto T, Nakayama M, Hamada C, Furuya R, Hasegawa H, Kasahara M, Moriishi M, Tomo T, Miyazaki M, Sato M, Yorioka N, Kawaguchi Y, Japanese Extraneal Collaborated Study Group (2007) Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am J Nephrol 27:409–415

    CAS  PubMed  Google Scholar 

  81. Davies SJ, Brown EA, Frandsen NE, Rodrigues AS, Rodriguez-Carmona A, Vychytil A, Macnamara E, Ekstrand A, Tranaeus A, Filho JC, EAPOS Group (2005) Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 67:1609–1615

    CAS  PubMed  Google Scholar 

  82. Say T, Oymak O, Inanc MT, Dogan A, Tokgoz B, Utas C (2009) Effects of twice-daily icodextrin administration on blood pressure and left ventricular mass in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int 29:443–449

    Google Scholar 

  83. Martis L, Patel M, Giertych J, Mongoven J, Taminne M, Perrier MA, Mendoza O, Goud N, Costigan A, Denjoy N, Verger C, Owen WF Jr (2005) Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet 365:588–594

    CAS  PubMed  Google Scholar 

  84. Adam FU, Singan M, Ozelsancak R, Torun D, Ozdemir FN, Haberal M (2007) Icodextrin-associated sterile peritonitis: a recent outbreak in Turkey. Perit Dial Int 27:598–599

    CAS  PubMed  Google Scholar 

  85. Anderstam B, García-López E, Heimbürger O, Lindholm B (2003) Determination of alpha-amylase activity in serum and dialysate from patients using icodextrin-based peritoneal dialysis fluid. Perit Dial Int 23:146–150

    CAS  PubMed  Google Scholar 

  86. Schalkwijk CG, ter Wee PM, Teerlink T (2000) Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluids and PD fluids based on glucose polymers or amino acids. Perit Dial Int 20:796–798

    CAS  PubMed  Google Scholar 

  87. Bender TO, Witowski J, Aufricht C, Endemann M, Frei U, Passlick-Deetjen J, Jörres A (2008) Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis. Pediatr Nephrol 23:1537–1543

    PubMed  Google Scholar 

  88. Reimann D, Dachs D, Meye C, Gross P (2004) Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int 24:378–384

    CAS  PubMed  Google Scholar 

  89. Tjiong HL, Zijlstra FJ, Rietveld T, Wattimena JL, Huijmans JG, Swart GR, Fieren MW (2007) Peritoneal protein losses and cytokine generation in automated peritoneal dialysis with combined amino acids and glucose solutions. Mediators Inflamm 2007:97272

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Qamar IU, Secker D, Levin L, Balfe JA, Zlotkin S, Balfe JW (1999) Effects of amino acid dialysis compared to dextrose dialysis in children on continuous cycling peritoneal dialysis. Perit Dial Int 19:237–247

    CAS  PubMed  Google Scholar 

  91. Li FK, Chan LY, Woo JC, Ho SK, Lo WK, Lai KN, Chan TM (2003) A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis 42:173–183

    CAS  PubMed  Google Scholar 

  92. Dombros NV, Prutis K, Tong M, Anderson GH, Harrison J, Sombolos K, Digenis G, Pettit J, Oreopoulos DG (1990) Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients—no effect on nutritional status. Perit Dial Int 10:79–84

    CAS  PubMed  Google Scholar 

  93. Tjiong HL, van den Berg JW, Wattimena JL, Rietveld T, van Dijk LJ, van der Wiel AM, van Egmond AM, Fieren MW, Swart R (2005) Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol 16:1486–1493

    CAS  PubMed  Google Scholar 

  94. Tjiong HL, Rietveld T, Wattimena JL, van den Berg JW, Kahriman D, van der Steen J, Hop WC, Swart R, Fieren MW (2007) Peritoneal dialysis with solutions containing amino acids plus glucose promotes protein synthesis during oral feeding. Clin J Am Soc Nephrol 2:74–80

    CAS  PubMed  Google Scholar 

  95. Vande Walle J, Raes A, Dehoorne J, Mauel R, Dejaeghere A, Matthys D (2004) Combined amino-acid and glucose peritoneal dialysis solution for children with acute renal failure. Adv Perit Dial 20:226–230

    Google Scholar 

  96. Brem AS, Maaz D, Shemin DG, Wolfson M (1996) Use of amino acid peritoneal dialysate for one year in a child on CCPD. Perit Dial Int 16:634–636

    CAS  PubMed  Google Scholar 

  97. Canepa A, Carrea A, Menoni S, Verrina E, Trivelli A, Gusmano R, Perfumo F (2001) Acute effects of simultaneous intraperitoneal infusion of glucose and amino acids. Kidney Int 59:1967–1973

    CAS  PubMed  Google Scholar 

  98. Le Poole CY, Welten AG, Weijmer MC, Valentijn RM, van Ittersum FJ, ter Wee PM (2005) Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int 25 [Suppl 3]:S64–S68

    PubMed  Google Scholar 

  99. Le Poole CY, van Ittersum FJ, Weijmer MC, Valentijn RM, ter Wee PM (2004) Clinical effects of a peritoneal dialysis regimen low in glucose in new peritoneal dialysis patients: a randomized crossover study. Adv Perit Dial 20:170–176

    PubMed  Google Scholar 

  100. Vande Walle JG, Raes AM, Dehoorne J, Mauel R (2004) Use of bicarbonate/lactate-buffered dialysate with a nighttime cycler, associated with a daytime dwell with icodextrin, may result in alkalosis in children. Adv Perit Dial 20:222–225

    Google Scholar 

Download references

Acknowledgements

European Pediatric Dialysis Working Group consists of: Gema Ariceta, Pediatric Nephrology, Hospital Cruces, Barakaldo, Vizcaya, Spain;Sevcan A. Bakkaloglu, Gazi University Hospital, Ankara, Turkey;Alberto Edefonti, Clinica Pediatrica De Marchi, Fondazione IRCCS Policlinico, Mangiagallie Regina Elena, Milan, Italy;Mesiha Ekim, Ankara University Hospital, Ankara, Turkey;Michel Fischbach, Hopital de Hautepierre, Strasbourg, France;Tuula Holtta, University of Helsinki, Finland;Günter Klaus, KfH Pediatric Kidney Center, Marburg, Germany;Claus Peter Schmitt, Center for Pediatric and Adolescent Medicine, Heidelberg, Germany;Cornelis Schroder, Gelre Hospital, Apeldoorn, The Netherlands;Constantinos J. Stefanidis, “A & P Kyriakou”, Children’s Hospital, Athens, Greece;Vladimirs Strazdins, Riga, Latvia;Johan Vande Walle, University Hospital, Ghent, Belgium;Karel Vondrak, University Hospital Motol Prague, Czech Republic;Alan R. Watson, Nottingham University Hospitals NHS Trust, Nottingham, UK (Convenor);Aleksandra Zurowska, Gdansk University Medical School, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Peter Schmitt.

Additional information

On behalf of the European Pediatric Dialysis Working Group

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, C.P., Bakkaloglu, S.A., Klaus, G. et al. Solutions for peritoneal dialysis in children: recommendations by the European Pediatric Dialysis Working Group. Pediatr Nephrol 26, 1137–1147 (2011). https://doi.org/10.1007/s00467-011-1863-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1863-4

Keywords

Navigation