Skip to main content

Advertisement

Log in

Pathogenesis and therapy of focal segmental glomerulosclerosis: an update

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Focal and segmental glomerulosclerosis (FSGS) is an important cause of steroid-resistant nephrotic syndrome in adults and children. It is responsible for 5–20% of all cases of end-stage kidney disease (ESKD) in the United States. The pathogenesis of FSGS has not been fully elucidated; however, data from molecular studies of familial cases in the last two decades suggest that FSGS is a defect of the podocyte. The therapeutic agents available for treatment of FSGS are not very effective and only a small percentage of affected individuals will achieve complete remission. Recent data from molecular biology and molecular genetics has provided insight into the mechanisms of action of old agents and also identification of other novel therapeutic targets. This review focuses on recent advances in the molecular pathogenesis of FSGS and currently available therapeutic agents as well as potential novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cameron JS (2003) Focal segmental glomerulosclerosis in adults. Nephrol Dial Transplant 18 [Suppl 6]:vi45-vi51

    PubMed  Google Scholar 

  2. Rich AR (1957) A hitherto undescribed vulnerability of the juxtamedullary glomeruli in lipoid nephrosis. Bull Johns Hopkins Hosp 100:173–186

    CAS  PubMed  Google Scholar 

  3. Churg J, Habib R, White RH (1970) Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet 760:1299–1302

    CAS  PubMed  Google Scholar 

  4. Kitiyakara C, Kopp JB, Eggers P (2003) Trends in the epidemiology of focal segmental glomerulosclerosis. Semin Nephrol 23:172–182

    PubMed  Google Scholar 

  5. U.S. Renal Data System (2007) USRDS 2007 Annual Data Report: Atlas of chronic kidney disease and end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD

  6. Kitiyakara C, Eggers P, Kopp JB (2004) Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis 44:815–825

    PubMed  Google Scholar 

  7. D’Agati VD, Fogo AB, Bruijn JA, Jennette JC (2004) Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 43:368–382

    PubMed  Google Scholar 

  8. Stokes MB, Valeri AM, Markowitz GS, D’Agati VD (2006) Cellular focal segmental glomerulosclerosis: clinical and pathologic features. Kidney Int 70:1783–1792

    CAS  PubMed  Google Scholar 

  9. Deegens JK, Steenbergen EJ, Borm GF, Wetzels JF (2008) Pathological variants of focal segmental glomerulosclerosis in an adult Dutch population—epidemiology and outcome. Nephrol Dial Transplant 23:186–192

    PubMed  Google Scholar 

  10. Silverstein DM, Craver R (2007) Presenting features and short-term outcome according to pathologic variant in childhood primary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2:700–707

    PubMed  Google Scholar 

  11. Canaud G, Dion D, Zuber J, Gubler MC, Sberro R, Thervet E, Snanoudj R, Charbit M, Salomon R, Martinez F, Legendre C, Noel LH, Niaudet P (2010) Recurrence of nephrotic syndrome after transplantation in a mixed population of children and adults: course of glomerular lesions and value of the Columbia classification of histological variants of focal and segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant 55:558–565

    Google Scholar 

  12. Johnstone DB, Holzman LB (2006) Clinical impact of research on the podocyte slit diaphragm. Nat Clin Pract Nephrol 2:271–282

    CAS  PubMed  Google Scholar 

  13. Smoyer WE, Mundel P (1998) Regulation of podocyte structure during the development of nephrotic syndrome. J Mol Med 76:172–183

    CAS  PubMed  Google Scholar 

  14. White RH, Glasgow EF, Mills RJ (1970) Clinicopathological study of nephrotic syndrome in childhood. Lancet 1:1353–1359

    CAS  PubMed  Google Scholar 

  15. Haraldsson B, Nyström J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88:451–487

    CAS  PubMed  Google Scholar 

  16. Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, Stacker SA, Achen MG, Alitalo K (2000) VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 14:2087–2096

    CAS  PubMed  Google Scholar 

  17. Rostgaard J, Qvortrup K (2002) Sieve plugs in fenestrae of glomerular capillaries—site of the filtration barrier? Cells Tissues Organs 170:132–138

    PubMed  Google Scholar 

  18. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed 9:121–167

    CAS  Google Scholar 

  19. Ballermann BJ, Stan RV (2007) Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. J Am Soc Nephrol 18:2432–2438

    PubMed  Google Scholar 

  20. Vaughan MR, Quaggin SE (2008) How do mesangial and endothelial cells form the glomerular tuft? J Am Soc Nephrol 19:24–33

    PubMed  Google Scholar 

  21. Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 2:556–560

    CAS  PubMed  Google Scholar 

  22. Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chonko AM, Artero M, Vincenti F (1996) Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 334:878–883

    CAS  PubMed  Google Scholar 

  23. Zenker M, Aigner T, Wendler O, Tralau T, Müntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wühl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dötsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A (2004) Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13:2625–2632

    CAS  PubMed  Google Scholar 

  24. Karnovsky MJ, Ainsworth SK (1972) The structural basis of glomerular filtration. Adv Nephrol Necker Hosp 2:35–60

    CAS  PubMed  Google Scholar 

  25. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    PubMed  Google Scholar 

  26. Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214

    CAS  PubMed  Google Scholar 

  27. Kriz W (2003) The pathogenesis of ‘classic’ focal segmental glomerulosclerosis—lessons from rat models. Nephrol Dial Transplant 18 [Suppl 6]:vi39–vi44

    Google Scholar 

  28. Sato Y, Wharram BL, Lee SK, Wickman L, Goyal M, Venkatareddy M, Chang JW, Wiggins JE, Lienczewski C, Kretzler M, Wiggins RC (2009) Urine podocyte mRNAs mark progression of renal disease. J Am Soc Nephrol 20:1041–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16:2941–2952

    CAS  PubMed  Google Scholar 

  30. Patrakka J, Tryggvason K (2009) New insights into the role of podocytes in proteinuria. Nat Rev Nephrol 5:463–468

    CAS  PubMed  Google Scholar 

  31. Santín S, García-Maset R, Ruíz P, Giménez I, Zamora I, Peña A, Madrid A, Camacho JA, Fraga G, Sánchez-Moreno A, Cobo MA, Bernis C, Ortiz A, de Pablos AL, Pintos G, Justa ML, Hidalgo-Barquero E, Fernández-Llama P, Ballarín J, Ars E, Torra R, FSGS Spanish Study Group (2009) Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int 76:1268–1276

    PubMed  Google Scholar 

  32. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24:349–354

    CAS  PubMed  Google Scholar 

  33. Roselli S, Gribouval O, Boute N, Sich M, Benessy F, Attié T, Gubler MC, Antignac C (2002) Podocin localizes in the kidney to the slit diaphragm area. Am J Pathol 160:131–139

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Barletta GM, Kovari IA, Verma RK, Kerjaschki D, Holzman LB (2003) Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers. J Biol Chem 278:19266–19271

    CAS  PubMed  Google Scholar 

  35. Simons M, Schwarz K, Kriz W, Miettinen A, Reiser J, Mundel P, Holthöfer H (2001) Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol 159:1069–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, Shaw AS, Holzman LB, Mundel P (2001) Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest 108:1621–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Harder T (2004) Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr Opin Immunol 16:353–359

    CAS  PubMed  Google Scholar 

  38. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    CAS  PubMed  Google Scholar 

  39. Ruf RG, Lichtenberger A, Karle SM, Haas JP, Anacleto FE, Schultheiss M, Zalewski I, Imm A, Ruf EM, Mucha B, Bagga A, Neuhaus T, Fuchshuber A, Bakkaloglu A, Hildebrandt F, Arbeitsgemeinschaft Für Pädiatrische Nephrologie Study Group (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15:722–732

    PubMed  Google Scholar 

  40. Machuca E, Hummel A, Nevo F, Dantal J, Martinez F, Al-Sabban E, Baudouin V, Abel L, Grünfeld JP, Antignac C (2009) Clinical and epidemiological assessment of steroid-resistant nephrotic syndrome associated with the NPHS2 R229Q variant. Kidney Int 75:727–735

    CAS  PubMed  Google Scholar 

  41. Roselli S, Heidet L, Sich M, Henger A, Kretzler M, Gubler MC, Antignac C (2004) Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol Cell Biol 24:550–560

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mollet G, Ratelade J, Boyer O, Muda AO, Morisset L, Lavin TA, Kitzis D, Dallman MJ, Bugeon L, Hubner N, Gubler MC, Antignac C, Esquivel EL (2009) Podocin inactivation in mature kidneys causes focal segmental glomerulosclerosis and nephrotic syndrome. J Am Soc Nephrol 20:2181–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodríguez-Pérez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24:251–256

    CAS  PubMed  Google Scholar 

  44. Yao J, Le TC, Kos CH, Henderson JM, Allen PG, Denker BM, Pollak MR (2004) Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol 2:e167

    PubMed  PubMed Central  Google Scholar 

  45. Michaud JL, Chaisson KM, Parks RJ, Kennedy CR (2006) FSGS-associated alpha-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. Kidney Int 70:1054–1061

    CAS  PubMed  Google Scholar 

  46. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    CAS  PubMed  Google Scholar 

  47. Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Heeringa SF, Möller CC, Du J, Yue L, Hinkes B, Chernin G, Vlangos CN, Hoyer PF, Reiser J, Hildebrandt F (2009) A novel TRPC6 mutation that causes childhood FSGS. PLoS One 4:e7771

    PubMed  PubMed Central  Google Scholar 

  49. Zhu B, Chen N, Wang ZH, Pan XX, Ren H, Zhang W, Wang WM (2009) Identification and functional analysis of a novel TRPC6 mutation associated with late onset familial focal segmental glomerulosclerosis in Chinese patients. Mutat Res 664:84–90

    CAS  PubMed  Google Scholar 

  50. Clapham DE, Runnels LW, Strübing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    CAS  PubMed  Google Scholar 

  51. Winn MP (2008) 2007 Young Investigator Award: TRP’ing into a new era for glomerular disease. J Am Soc Nephrol 19:1071–1075

    CAS  PubMed  Google Scholar 

  52. Möller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, Henger A, Kretzler M, Shankland SJ, Reiser J (2007) Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 18:29–36

    PubMed  Google Scholar 

  53. Eckel J, Mukerji N, Lavin P, Ferimazova N, Gbadegesin R, Damodaran T, Bowling B, Wu G, Homstad A, Barisoni L, Bartkowiak B, Winn M (2009) TRPC6 deficiency does not cause glomerulosclerosis. J Am Soc Nephrol 20:314A

    Google Scholar 

  54. Gbadegesin RA, Damodaran T, Homstad A, Bartkowiak B, Bowling B, Wu G, Lavin P, Eckel J, Mukerji N, Winn M (2009) TRPC6 gene dose ameliorates the course of puromycin induced kidney injury. J Am Soc Nephrol 20:318A

    Google Scholar 

  55. Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, Unanue ER, Shaw AS (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300:1298–1300

    CAS  PubMed  Google Scholar 

  56. Wolf G, Stahl RA (2003) CD2-associated protein and glomerular disease. Lancet 362:1746–1748

    CAS  PubMed  Google Scholar 

  57. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286:312–315

    CAS  PubMed  Google Scholar 

  58. Löwik MM, Groenen PJ, Pronk I, Lilien MR, Goldschmeding R, Dijkman HB, Levtchenko EN, Monnens LA, van den Heuvel LP (2007) Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int 72:1198–1203

    PubMed  Google Scholar 

  59. Gigante M, Pontrelli P, Montemurno E, Roca L, Aucella F, Penza R, Caridi G, Ranieri E, Ghiggeri GM, Gesualdo L (2009) CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant 24:1858–1864

    CAS  PubMed  Google Scholar 

  60. Niaudet P, Gubler MC (2006) WT1 and glomerular diseases. Pediatr Nephrol 21:1653–1660

    PubMed  Google Scholar 

  61. Mucha B, Ozaltin F, Hinkes BG, Hasselbacher K, Ruf RG, Schultheiss M, Hangan D, Hoskins BE, Everding AS, Bogdanovic R, Seeman T, Hoppe B, Hildebrandt F, Members of the APN Study Group (2006) Mutations in the Wilms' tumor 1 gene cause isolated steroid resistant nephrotic syndrome and occur in exons 8 and 9. Pediatr Res 59:325–331

    CAS  PubMed  Google Scholar 

  62. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nürnberg G, Garg P, Verma R, Chaib H, Hoskins BE, Ashraf S, Becker C, Hennies HC, Goyal M, Wharram BL, Schachter AD, Mudumana S, Drummond I, Kerjaschki D, Waldherr R, Dietrich A, Ozaltin F, Bakkaloglu A, Cleper R, Basel-Vanagaite L, Pohl M, Griebel M, Tsygin AN, Soylu A, Müller D, Sorli CS, Bunney TD, Katan M, Liu J, Attanasio M, O’Toole JF, Hasselbacher K, Mucha B, Otto EA, Airik R, Kispert A, Kelley GG, Smrcka AV, Gudermann T, Holzman LB, Nürnberg P, Hildebrandt F (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38:1397–1405

    CAS  PubMed  Google Scholar 

  63. Gbadegesin R, Hinkes BG, Hoskins BE, Vlangos CN, Heeringa SF, Liu J, Loirat C, Ozaltin F, Hashmi S, Ulmer F, Cleper R, Ettenger R, Antignac C, Wiggins RC, Zenker M, Hildebrandt F (2008) Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant 23:1291–1297

    CAS  PubMed  Google Scholar 

  64. Gilbert RD, Turner CL, Gibson J, Bass PS, Haq MR, Cross E, Bunyan DJ, Collins AR, Tapper WJ, Needell JC, Dell B, Morton NE, Temple IK, Robinson DO (2009) Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis. Kidney Int 75:415–419

    CAS  PubMed  Google Scholar 

  65. Boyer O, Benoit G, Gribouval O, Nevo F, Pawtowski A, Bilge I, Bircan Z, Deschênes G, Guay-Woodford LM, Hall M, Macher MA, Soulami K, Stefanidis CJ, Weiss R, Loirat C, Gubler MC, Antignac C (2010) Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome. J Med Genet 47:45–52

    Google Scholar 

  66. Wing MR, Bourdon DM, Harden TK (2003) PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv 3:273–280

    CAS  PubMed  Google Scholar 

  67. Hasselbacher K, Wiggins RC, Matejas V, Hinkes BG, Mucha B, Hoskins BE, Ozaltin F, Nürnberg G, Becker C, Hangan D, Pohl M, Kuwertz-Bröking E, Griebel M, Schumacher V, Royer-Pokora B, Bakkaloglu A, Nürnberg P, Zenker M, Hildebrandt F (2006) Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int 70:1008–1012

    CAS  PubMed  Google Scholar 

  68. Brown EJ, Schlöndorff JS, Becker DJ, Tsukaguchi H, Uscinski AL, Higgs HN, Henderson JM, Pollak MR (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 42:72–76

    CAS  PubMed  Google Scholar 

  69. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Korbet SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40:1175–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, Coresh J, Patterson N, Tandon A, Powe NR, Fink NE, Sadler JH, Weir MR, Abboud HE, Adler SG, Divers J, Iyengar SK, Freedman BI, Kimmel PL, Knowler WC, Kohn OF, Kramp K, Leehey DJ, Nicholas SB, Pahl MV, Schelling JR, Sedor JR, Thornley-Brown D, Winkler CA, Smith MW, Parekh RS, Family Investigation of Nephropathy and Diabetes Research Group (2008) MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 40:1185–1192

    CAS  PubMed  Google Scholar 

  71. Behar DM, Rosset S, Tzur S, Selig S, Yudkovsky G, Bercovici S, Kopp JB, Winkler CA, Nelson GW, Wasser WG, Skorecki K (2010) African ancestry allelic variation at the MYH9 gene contributes to increased susceptibility to non-diabetic end-stage kidney disease in Hispanic Americans. Hum Mol Genet 19:1816–1827

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Franceschini N, Voruganti VS, Haack K, Almasy L, Laston S, Goring HH, Umans JG, Lee ET, Best LG, Fabsitz RR, MacCluer JW, Howard BV, North KE, Cole SA (2010) The association of the MYH9 gene and kidney outcomes in American Indians: the Strong Heart Family Study. Hum Genet 127:295–301

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghiggeri GM, Caridi G, Magrini U, Sessa A, Savoia A, Seri M, Pecci A, Romagnoli R, Gangarossa S, Noris P, Sartore S, Necchi V, Ravazzolo R, Balduini CL (2003) Genetics, clinical and pathological features of glomerulonephritis associated with mutations of nonmuscle myosin IIA (Fechtner syndrome). Am J Kidney Dis 41:95–104

    CAS  PubMed  Google Scholar 

  74. Dong F, Li S, Pujol-Moix N, Luban NL, Shin SW, Seo JH, Ruiz-Saez A, Demeter J, Langdon S, Kelley MJ (2005) Genotype-phenotype correlation in MYH9-related thrombocytopenia. Br J Haematol 130:620–627

    CAS  PubMed  Google Scholar 

  75. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, Johnson RL, Lee B (1998) Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet 19:47–50

    CAS  PubMed  Google Scholar 

  77. Boerkoel CF, Takashima H, John J, Yan J, Stankiewicz P, Rosenbarker L, André JL, Bogdanovic R, Burguet A, Cockfield S, Cordeiro I, Fründ S, Illies F, Joseph M, Kaitila I, Lama G, Loirat C, McLeod DR, Milford DV, Petty EM, Rodrigo F, Saraiva JM, Schmidt B, Smith GC, Spranger J, Stein A, Thiele H, Tizard J, Weksberg R, Lupski JR, Stockton DW (2002) Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet 30:215–220

    CAS  PubMed  Google Scholar 

  78. Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, Lüllmann-Rauch R, Blanz J, Zhang KW, Stankovich J, Kalnins RM, Dowling JP, Andermann E, Andermann F, Faldini E, D’Hooge R, Vadlamudi L, Macdonell RA, Hodgson BL, Bayly MA, Savige J, Mulley JC, Smyth GK, Power DA, Saftig P, Bahlo M (2008) Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 82:673–684

    CAS  PubMed  PubMed Central  Google Scholar 

  79. ISKDC (1978) Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int 13:159–165

    Google Scholar 

  80. Mendoza SA, Tune BM (1992) Treatment of childhood nephrotic syndrome. J Am Soc Nephrol 3:889–894

    CAS  PubMed  Google Scholar 

  81. Tune BM, Mendoza SA (1997) Treatment of the idiopathic nephrotic syndrome: regimens and outcomes in children and adults. J Am Soc Nephrol 8:824–832

    CAS  PubMed  Google Scholar 

  82. Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW (2006) Direct effects of dexamethasone on human podocytes. Kidney Int 70:1038–1045

    CAS  PubMed  Google Scholar 

  83. Ransom RF, Lam NG, Hallett MA, Atkinson SJ, Smoyer WE (2005) Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 68:2473–2483

    CAS  PubMed  Google Scholar 

  84. Zietse R, Wenting GJ, Kramer P, Schalekamp MA, Weimar W (1992) Effects of cyclosporin A on glomerular barrier function in the nephrotic syndrome. Clin Sci (Lond) 82:641–650

    CAS  Google Scholar 

  85. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hodson EM, Willis NS, Craig JC (2008) Non-corticosteroid treatment for nephrotic syndrome in children. Cochrane Database Syst Rev CD002290

  87. Mahmoud I, Basuni F, Sabry A, El-Husseini A, Hassan N, Ahmad NS, Elbaz M, Moustafa F, Sobh M (2005) Single-centre experience with cyclosporin in 106 children with idiopathic focal segmental glomerulosclerosis. Nephrol Dial Transplant 20:735–742

    PubMed  Google Scholar 

  88. Cattran DC, Alexopoulos E, Heering P, Hoyer PF, Johnston A, Meyrier A, Ponticelli C, Saito T, Choukroun G, Nachman P, Praga M, Yoshikawa N (2007) Cyclosporin in idiopathic glomerular disease associated with the nephrotic syndrome: workshop recommendations. Kidney Int 72:1429–1447

    CAS  PubMed  Google Scholar 

  89. Xia Z, Liu G, Gao Y, Fan Z, Fu Y, Zhang LF, Ren X, Gao C (2006) FK506 in the treatment of children with nephrotic syndrome of different pathological types. Clin Nephrol 66:85–88

    CAS  PubMed  Google Scholar 

  90. Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, Maxwell DR, Kunis CL (1999) A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. North America Nephrotic Syndrome Study Group. Kidney Int 56:2220–2226

    CAS  PubMed  Google Scholar 

  91. Ziswiler R, Steinmann-Niggli K, Kappeler A, Daniel C, Marti HP (1998) Mycophenolic acid: a new approach to the therapy of experimental mesangial proliferative glomerulonephritis. J Am Soc Nephrol 9:2055–2066

    CAS  PubMed  Google Scholar 

  92. Hauser IA, Renders L, Radeke HH, Sterzel RB, Goppelt-Struebe M (1999) Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant 14:58–63

    CAS  PubMed  Google Scholar 

  93. Penny MJ, Boyd RA, Hall BM (1998) Mycophenolate mofetil prevents the induction of active Heymann nephritis: association with Th2 cytokine inhibition. J Am Soc Nephrol 9:2272–2282

    CAS  PubMed  Google Scholar 

  94. Allison AC, Kowalski WJ, Muller CJ, Waters RV, Eugui EM (1993) Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules. Transplant Proc 25:67–70

    CAS  PubMed  Google Scholar 

  95. Cattran DC, Wang MM, Appel G, Matalon A, Briggs W (2004) Mycophenolate mofetil in the treatment of focal segmental glomerulosclerosis. Clin Nephrol 62:405–411

    CAS  PubMed  Google Scholar 

  96. Montané B, Abitbol C, Chandar J, Strauss J, Zilleruelo G (2003) Novel therapy of focal glomerulosclerosis with mycophenolate and angiotensin blockade. Pediatr Nephrol 18:772–777

    PubMed  Google Scholar 

  97. Marasà M, Kopp JB (2009) Monoclonal antibodies for podocytopathies: rationale and clinical responses. Nat Rev Nephrol 5:337–348

    PubMed  Google Scholar 

  98. Guigonis V, Dallocchio A, Baudouin V, Dehennault M, Hachon-Le Camus C, Afanetti M, Groothoff J, Llanas B, Niaudet P, Nivet H, Raynaud N, Taque S, Ronco P, Bouissou F (2008) Rituximab treatment for severe steroid- or cyclosporine-dependent nephrotic syndrome: a multicentric series of 22 cases. Pediatr Nephrol 23:1269–1279

    PubMed  Google Scholar 

  99. Fernandez-Fresnedo G, Segarra A, González E, Alexandru S, Delgado R, Ramos N, Egido J, Praga M, Trabajo de Enfermedades Glomerulares de la Sociedad Española de Nefrología (GLOSEN) (2009) Rituximab treatment of adult patients with steroid-resistant focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 4:1317–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Joy MS, Gipson DS, Powell L, MacHardy J, Jennette JC, Vento S, Pan C, Savin V, Eddy A, Fogo AB, Kopp JB, Cattran D, Trachtman H (2010) Phase 1 trial of adalimumab in Focal Segmental Glomerulosclerosis (FSGS). II. Report of the FONT (Novel Therapies for Resistant FSGS) study group. Am J Kidney Dis 55:50–60

    CAS  PubMed  Google Scholar 

  101. Peyser A, Machardy N, Tarapore F, Machardy J, Powell L, Gipson DS, Savin V, Pan C, Kump T, Vento S, Trachtman H (2010) Follow-up of phase I trial of adalimumab and rosiglitazone in FSGS. III. Report of the FONT study group. BMC Nephrol 11:2

    PubMed  PubMed Central  Google Scholar 

  102. Joy MS, Gipson DS, Dike M, Powell L, Thompson A, Vento S, Eddy A, Fogo AB, Kopp JB, Cattran D, Trachtman H (2009) Phase I trial of rosiglitazone in FSGS. I. Report of the FONT Study Group. Clin J Am Soc Nephrol 4:39–47

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Savin VJ, McCarthy ET, Sharma R, Charba D, Sharma M (2008) Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res 151:288–292

    CAS  PubMed  Google Scholar 

  104. De Smet E, Rioux JP, Ammann H, Déziel C, Quérin S (2009) FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol Dial Transplant 24:2938–2940

    PubMed  Google Scholar 

  105. Lavin P, Gbadegesin R, Damodaran TV, Winn MP (2008) Therapeutic targets in focal and segmental glomerulosclerosis. Curr Opin Nephrol Hypertens 17:386–392

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Garg P, Verma R, Nihalani D, Johnstone DB, Holzman LB (2007) Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol 27:8698–8712

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Galeano B, Klootwijk R, Manoli I, Sun M, Ciccone C, Darvish D, Starost MF, Zerfas PM, Hoffmann VJ, Hoogstraten-Miller S, Krasnewich DM, Gahl WA, Huizing M (2007) Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 117:1585–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV (2003) Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol 285:F40–F48

    CAS  PubMed  Google Scholar 

  109. Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, Cook HT (2006) Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 24:2448–2455

    CAS  PubMed  Google Scholar 

  110. Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, Parente E, Becherucci F, Gacci M, Carini M, Maggi E, Serio M, Vannelli GB, Lasagni L, Romagnani S, Romagnani P (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ (2009) Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 20:333–343

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Little MH, Bertram JF (2009) Is there such a thing as a renal stem cell? J Am Soc Nephrol 20:2112–2117

    CAS  PubMed  Google Scholar 

  113. Le Berre L, Bruneau S, Naulet J, Renaudin K, Buzelin F, Usal C, Smit H, Condamine T, Soulillou JP, Dantal J (2009) Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. J Am Soc Nephrol 20:57–67

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding

NIH K08DK082495-01 and grants from the Nephcure foundation to RG. RG is a recipient of a Doris Duke Clinical Scientist Development Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheed Gbadegesin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gbadegesin, R., Lavin, P., Foreman, J. et al. Pathogenesis and therapy of focal segmental glomerulosclerosis: an update. Pediatr Nephrol 26, 1001–1015 (2011). https://doi.org/10.1007/s00467-010-1692-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1692-x

Keywords

Navigation