Skip to main content
Log in

Phosphodiesterase-5 gene (PDE5A) polymorphisms are associated with progression of childhood IgA nephropathy

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The phosphodiesterase-5 (PDE-5) gene is highly specific to cyclic GMP (cGMP) and several experimental studies have shown that the nitric oxide/cGMP pathway plays an important role in the pathogenesis of glomerulonephritis, including IgA nephropathy (IgAN). The present study was conducted to investigate the association among 16 single nucleotide polymorphisms (SNPs) of PDE5A and childhood IgAN. The genotyping data from 160 patients with childhood IgAN and 454 controls showed a significant difference in rs13124532 (codominant, P = 0.005; dominant, P = 0.005). Furthermore, patient subgroup analysis revealed an association between the development of proteinuria (>4 and ≤4 mg/m2/h) and rs13124532 (codominant, P = 0.008; dominant, P = 0.011), and between the nephrotic range proteinuria (> 40 mg/m2/h) and rs11734241 (dominant, P = 0.035), rs12510138 (dominant, P = 0.028), rs13134665 (dominant, P = 0.025), rs3822192 (dominant, P = 0.027), rs10013305 (dominant, P = 0.020), rs1480940 (dominant, P = 0.020), rs1480936 (dominant, P = 0.019), rs11947234 (dominant, P = 0.019), and rs2127823 (dominant, P = 0.026). The pathological findings showed that rs13124532 had an association with podocyte foot process effacement (codominant, P = 0.035; dominant, P = 0.044) and with pathological progression (codominant, P = 0.046). Our results suggest that PDE5A is associated with increased disease susceptibility, pathological progression, and development of proteinuria in childhood IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GN:

Glomerulonephritis

IgAN:

IgA nephropathy

LD:

Linkage disequilibrium

PDE5A :

Phosphodiesterase 5A

SNP:

Single nucleotide polymorphism

References

  1. Fogo AB (2007) Mechanisms of progression of chronic kidney disease. Pediatr Nephrol 22:2011–2022

    Article  PubMed  Google Scholar 

  2. Barratt J, Smith AC, Molyneux K, Feehally J (2007) Immunopathogenesis of IgAN. Semin Immunopathol 29:427–443

    Article  CAS  PubMed  Google Scholar 

  3. Hohenstein B, Daniel C, Wittmann S, Hugo C (2008) PDE-5 inhibition impedes TSP-1 expression, TGF-beta activation and matrix accumulation in experimental glomerulonephritis. Nephrol Dial Transplant 23:3427–3436

    Article  CAS  PubMed  Google Scholar 

  4. Kotera J, Fujishige K, Omori K (2000) Immunohistochemical localization of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues. J Histochem Cytochem 48:685–693

    CAS  PubMed  Google Scholar 

  5. Knight S, Snellen H, Humphreys M, Baylis C (2007) Increased renal phosphodiesterase-5 activity mediates the blunted natriuretic response to ANP in the pregnant rat. Am J Physiol Renal Physiol 292:F655–F659

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Espinoza F, Pons H, Vaziri ND (2005) Early treatment with cGMP phosphodiesterase inhibitor ameliorates progression of renal damage. Kidney Int 68:2131–2142

    Article  CAS  PubMed  Google Scholar 

  7. Lee KW, Jeong JY, Lim BJ, Chang YK, Lee SJ, Na KR, Shin YT, Choi DE (2009) Sildenafil attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Toxicology 257:137–143

    Article  CAS  PubMed  Google Scholar 

  8. Hosogai N, Tomita M, Hamada K, Ogawa T, Hirosumi J, Manda T, Mutoh S (2003) Phosphodiesterase type 5 inhibition ameliorates nephrotoxicity induced by cyclosporin A in spontaneous hypertensive rats. Eur J Pharmacol 477:171–178

    Article  CAS  PubMed  Google Scholar 

  9. Furusu A, Miyazaki M, Abe K, Tsukasaki S, Shioshita K, Sasaki O, Miyazaki K, Ozono Y, Koji T, Harada T, Sakai H, Kohno S (1998) Expression of endothelial and inducible nitric oxide synthase in human glomerulonephritis. Kidney Int 53:1760–1768

    Article  CAS  PubMed  Google Scholar 

  10. Kashem A, Endoh M, Yano N, Yamauchi F, Nomoto Y, Sakai H (1996) Expression of inducible-NOS in human glomerulonephritis: the possible source is infiltrating monocytes/macrophages. Kidney Int 50:392–399

    Article  CAS  PubMed  Google Scholar 

  11. Qiu LQ, Sinniah R, Hsu SI (2004) Coupled induction of iNOS and p53 upregulation in renal resident cells may be linked with apoptotic activity in the pathogenesis of progressive IgA nephropathy. J Am Soc Nephrol 15:2066–2078

    Article  CAS  PubMed  Google Scholar 

  12. Merta M, Reiterova J, Tesar V, Stekrova J, Viklicky O (2002) Influence of the endothelial nitric oxide synthase polymorphism on the progression of autosomal dominant polycystic kidney disease and IgA nephropathy. Ren Fail 24:585–593

    Article  CAS  PubMed  Google Scholar 

  13. Morita T, Ito H, Suehiro T, Tahara K, Matsumori A, Chikazawa H, Nakauchi Y, Nishiya K, Hashimoto K (1999) Effect of a polymorphism of endothelial nitric oxide synthase gene in Japanese patients with IgA nephropathy. Clin Nephrol 52:203–209

    CAS  PubMed  Google Scholar 

  14. Burg M, Menne J, Ostendorf T, Kliem V, Floege J (1997) Gene-polymorphisms of angiotensin converting enzyme and endothelial nitric oxide synthase in patients with primary glomerulonephritis. Clin Nephrol 48:205–211

    CAS  PubMed  Google Scholar 

  15. Hong Q, Ding R, Chen XM, Lu Y (2006) Association between endothelial nitric oxide synthase gene 4a/b polymorphism and IgA nephropathy. Nan Fang Yi Ke Da Xue Xue Bao 26(1421–1422):1430

    Google Scholar 

  16. Alasehirli B, Balat A, Barlas O, Kont A (2009) Nitric oxide synthase gene polymorphisms in children with minimal change nephrotic syndrome. Pediatr Int 51:75–78

    Article  CAS  PubMed  Google Scholar 

  17. Kim W, Kang SK, Lee DY, Koh GY, Lee KY, Park SK (2000) Endothelial nitric oxide synthase gene polymorphism in patients with IgA nephropathy. Nephron 86:232–233

    Article  CAS  PubMed  Google Scholar 

  18. Lim SC, Liu JJ, Low HQ, Morgenthaler NG, Li Y, Yeoh LY, Wu YS, Goh SK, Chionh CY, Tan SH, Kon YC, Soon PC, Bee YM, Subramaniam T, Sum CF, Chia KS (2009) Microarray analysis of multiple candidate genes and associated plasma proteins for nephropathy secondary to type 2 diabetes among Chinese individuals. Diabetologia 52:1343–1351

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Perez JC, Macias-Reyes A, Jimenez-Sosa A, Companioni O, Rodriguez-Esparragon FJ, Cobo MA, Checa-Andres MD, Palop-Cubillo L, Alonso A, Torres A (2009) A synergistic association of ACE I/D and eNOS G894T gene variants with the progression of immunoglobulin a nephropathy—a pilot study. Am J Nephrol 30:303–309

    Article  CAS  PubMed  Google Scholar 

  20. Salvi F, Sarzani R, Giorgi R, Donatelli G, Pietrucci F, Micheli A, Baldoni M, Minardi D, Dessi-Fulgheri P, Polito M, Muzzonigro G, Rappelli A (2004) Cardiovascular effects of sildenafil in hypertensive men with erectile dysfunction and different alleles of the type 5 cGMP-specific phosphodiesterase (PDE5). Int J Impot Res 16:412–417

    Article  CAS  PubMed  Google Scholar 

  21. Lee HS, Lee MS, Lee SM, Lee SY, Lee ES, Lee EY, Park SY, Han JS, Kim S, Lee JS (2005) Histological grading of IgA nephropathy predicting renal outcome: revisiting H.S. Lee’s glomerular grading system. Nephrol Dial Transplant 20:342–348

    Article  PubMed  Google Scholar 

  22. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Yao J, Meng Y, Kasai A, Hiramatsu N, Hayakawa K, Miida T, Takeda M, Okada M, Kitamura M (2006) Profiling of functional phosphodiesterase in mesangial cells using a CRE-SEAP-based reporting system. Br J Pharmacol 148:833–844

    Article  CAS  PubMed  Google Scholar 

  24. Choi DE, Jeong JY, Lim BJ, Chung S, Chang YK, Lee SJ, Na KR, Kim SY, Shin YT, Lee KW (2009) Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am J Physiol Renal Physiol 297:F362–370

    Article  CAS  PubMed  Google Scholar 

  25. Lau DH, Mikhailidis DP, Thompson CS (2007) The effect of vardenafil (a PDE type 5 inhibitor) on renal function in the diabetic rabbit: a pilot study. In Vivo 21:851–854

    CAS  PubMed  Google Scholar 

  26. Chiu YJ, Reid IA (2002) Effect of sildenafil on renin secretion in human subjects. Exp Biol Med (Maywood) 227:620–625

    CAS  Google Scholar 

  27. Thiesson HC, Jensen BL, Jespersen B, Schaffalitzky de Muckadell OB, Bistrup C, Walter S, Ottosen PD, Veje A, Skott O (2005) Inhibition of cGMP-specific phosphodiesterase type 5 reduces sodium excretion and arterial blood pressure in patients with NaCl retention and ascites. Am J Physiol Renal Physiol 288:F1044–F1052

    Article  CAS  PubMed  Google Scholar 

  28. Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med 6:637–641

    Article  CAS  PubMed  Google Scholar 

  29. Hughes TA (2006) Regulation of gene expression by alternative untranslated regions. Trends Genet 22:119–122

    Article  CAS  PubMed  Google Scholar 

  30. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  CAS  PubMed  Google Scholar 

  31. Komar AA (2007) Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8:1075–1080

    Article  CAS  PubMed  Google Scholar 

  32. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  33. Ying SY, Chang CP, Lin SL (2010) Intron-mediated RNA interference, intronic microRNAs, and applications. Methods Mol Biol 629:205–237

    Article  PubMed  Google Scholar 

  34. Malisic EJ, Jankovic RN, Radulovic SS (2010) An intronic variant in the TP53 gene in Serbian women with cervical or ovarian cancer. Cancer Genet Cytogenet 198:173–175

    Article  CAS  PubMed  Google Scholar 

  35. Maruyama K, Yoshida M, Nishio H, Shirakawa T, Kawamura T, Tanaka R, Nakamura H, Iijima K, Yoshikawa N (2001) Polymorphisms of renin-angiotensin system genes in childhood IgA nephropathy. Pediatr Nephrol 16:350–355

    Article  CAS  PubMed  Google Scholar 

  36. Nakanishi K, Sako M, Yata N, Aoyagi N, Nozu K, Tanaka R, Iijima K, Yoshikawa N (2004) A-20C angiotensinogen gene polymorphism and proteinuria in childhood IgA nephropathy. Pediatr Nephrol 19:144–147

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Program of Kyung Hee University for the Young Researcher of Medical Science in 2009 (KHU-20091437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Soo Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, WH., Suh, JS. & Cho, BS. Phosphodiesterase-5 gene (PDE5A) polymorphisms are associated with progression of childhood IgA nephropathy. Pediatr Nephrol 25, 1663–1671 (2010). https://doi.org/10.1007/s00467-010-1579-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1579-x

Keywords

Navigation