Skip to main content

Advertisement

Log in

A comparative proteomic study of nephrogenesis in intrauterine growth restriction

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Nephrogenesis requires a fine balance of many factors that can be disturbed by intrauterine growth restriction (IUGR), leading to a low nephron endowment. The aim of this study was to test the hypothesis that IUGR affects expression of key proteins that regulate nephrogenesis, by a comparative proteomic approach. IUGR was induced in Sprague–Dawley (SD) rats by isocaloric protein restriction in pregnant dams. A series of methods, including two-dimensional gel electrophoresis (2-DE), silver staining, mass spectrometry and database searching was used. After silver staining, 2-DE image analysis detected an average 730 ± 58 spots in the IUGR group and 711 ± 73 spots in the control group. The average matched rate was 86% and 81%, respectively. The differential proteomic expression analysis found that 11 protein spots were expressed only in the IUGR group and one in the control group. Seven protein spots were up-regulated more than fivefold and two were down-regulated more than fivefold in the IUGR group compared with those in control group. These 21 protein spots were preliminarily identified and were structural molecules, including vimentin, perlecan, gamma-actin and cytokeratin 10, transcription regulators, transporter proteins, enzymes, and so on. These proteins were involved primarily in energy metabolism, oxidation and reduction, signal transduction, cell proliferation and apoptosis. Data from this study may provide, at least partly, evidence that abnormality of metabolism, imbalance of redox and apoptosis, and disorder of cellular signal and cell proliferation may be the major mechanisms responsible for abnormal nephrogenesis in IUGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941

    Article  CAS  PubMed  Google Scholar 

  2. Armitage JA, Taylor PD, Poston L (2005) Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 565:3–8

    Article  CAS  PubMed  Google Scholar 

  3. Silver LE, Decamps PJ, Korst LM, Platt LD, Castro LC (2003) Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am J Obstet Gynecol 188:1320–1325

    Article  PubMed  Google Scholar 

  4. Latini G, De Mitri B, Del Vecchio A, Chitano G, De Felice Z, Zetterström R (2004) Foetal growth of kidneys, liver and spleen in intrauterine growth restriction: “programming” causing “metabolic syndrome” in adult age. Acta Paediatr 93:1635–1639

    Article  CAS  PubMed  Google Scholar 

  5. Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A (2005) Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol 20:579–584

    Article  PubMed  Google Scholar 

  6. Hoy WE, Rees M, Kile E, Mathews JD, Wang Z (1999) A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int 56:1072–1077

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Xu H, Shen Q, Guo W, Sun L, Lin SY (2006) Influence of intrauterine growth retardation on blood pressure and renal function in rats. Zhanghua Shen Zang Bing Za Zhi 22:706–707

    CAS  Google Scholar 

  8. Godfrey KM, Barker DJ (2000) Fetal nutrition and adult disease. Am J Clin Nutr 71:1344S–1352S

    CAS  PubMed  Google Scholar 

  9. Martins JP, Monteiro JC, Paixão AD (2003) Renal function in adult rats subjected to prenatal dexamethasone. Clin Exp Pharmacol Physiol 30:32–37

    Article  CAS  PubMed  Google Scholar 

  10. Mañalich R, Reyes L, Herrera M, Melendi C, Fundora I (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58:770–773

    Article  PubMed  Google Scholar 

  11. Thame M, Osmond C, Wilks RJ, Bennett FI, McFarlane-Anderson N, Forrester TE (2000) Blood pressure is related to placental volume and birth weight. Hypertension 35:662–667

    CAS  PubMed  Google Scholar 

  12. Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134:2169–2172

    CAS  PubMed  Google Scholar 

  13. Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci 104:607–614

    Article  CAS  PubMed  Google Scholar 

  14. do Carmo Pinho Franco M, Nigro D, Fortes ZB, Tostes RC, Carvalho MH, Lucas SR, Gomes GN, Coimbra TM, Gil FZ (2003) Intrauterine undernutrition—renal and vascular origin of hypertension. Cardiovasc Res 60:228–234

    Article  PubMed  Google Scholar 

  15. Alexander BT (2003) Intrauterine growth restriction and reduced glomerular number: role of apoptosis. Am J Physiol Regul Integr Comp Physiol 285:R933–R934

    CAS  PubMed  Google Scholar 

  16. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH (2003) Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 285:962–970

    Google Scholar 

  17. Arthur JM, Thongboonker V, Scherzer JA, Cai J, Pierce WM, Klein JB (2002) Differential expression of proteins in renal cortex and medulla: a proteomic approach. Kidney Int 62:1314–1321

    Article  CAS  PubMed  Google Scholar 

  18. Thongboonker V, Barati MT, McLeish KR, Benarafa C, Remold-O’Donnell E, Zheng S, Rovin BH, Pierce WM, Epstein PN, Klein JB (2004) Alterations in the renal elastin-elastase system in type 1 diabetic nephropathy identified by proteomic analysis. J Am Soc Nephrol 15:650–662

    Article  Google Scholar 

  19. Thongboonker V (2004) Proteomics in nephrology: current status and future directions. Am J Nephrol 24:360–378

    Article  Google Scholar 

  20. Schaub S, Rush D, Wilkins J, Gibson IW, Weiler T, Sangster K, Nicolle L, Karpinski M, Jeffery J, Nickerson P (2004) Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol 15:219–227

    Article  CAS  PubMed  Google Scholar 

  21. Weinkauf M, Hiddemann W, Dreyling M (2006) Sample pooling in 2-D gel electrophoresis: a new approach to reduce nonspecific expression background. Electrophoresis 27:4555–4558

    Article  CAS  PubMed  Google Scholar 

  22. Karp NA, Lilley KS (2009) Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9:388–397

    Article  CAS  PubMed  Google Scholar 

  23. Jia SQ, Niu ZJ, Zhang LH, Zhong XY, Shi T, Du H, Zhang GG, Hu Y, Su XL, Ji JF (2009) Identification of prognosis-related proteins in advanced gastric cancer by mass spectrometry-based comparative proteomics. J Cancer Res Clin Oncol 135:403–411

    Article  CAS  PubMed  Google Scholar 

  24. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062

    Article  CAS  PubMed  Google Scholar 

  25. Murer L, Benetti E, Centi S, Della Vella M, Artifoni L, Capizzi A, Zucchetta P, Del Prete D, Carasi C, Montini G, Rigamonti W, Zaccello G (2006) Clinical and molecular markers of chronic interstitial nephropathy in congenital unilateral ureteropelvic junction obstruction. J Urol 176:2668–2673

    Article  CAS  PubMed  Google Scholar 

  26. Sanai T, Sobka T, Johnson T, el-Essawy M, Muchaneta-Kubara EC, Ben Gharbia O, el Oldroyd S, Nahas AM (2000) Expression of cytoskeletal proteins during the course of experimental diabetic nephropathy. Diabetologia 43:91–100

    Article  CAS  PubMed  Google Scholar 

  27. Bob FR, Gluhovschi G, Herman D, Potencz E, Gluhovschi C, Trandafirescu V, Schiller A, Petrica L, Velciov S, Bozdog G, Vernic C (2008) Histological, immunohistochemical and biological data in assessing interstitial fibrosis in patients with chronic glomerulonephritis. Acta Histochem 110:196–203

    Article  PubMed  Google Scholar 

  28. Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L, Kershaw D, Wiggins R (2001) Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int 60:957–968

    Article  CAS  PubMed  Google Scholar 

  29. Zou J, Yaoita E, Watanabe Y, Yoshida Y, Nameta M, Li H, Qu Z, Yamamoto T (2006) Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury. Virchows Arch 448:485–492

    Article  CAS  PubMed  Google Scholar 

  30. Lucas SR, Miraglia SM, Zaladek Gil F, Machado Coimbra T (2001) Intrauterine food restriction as a determinant of nephrosclerosis. Am J Kidney Dis 37:467–476

    Article  PubMed  Google Scholar 

  31. Knox SM, Whitelock JM (2006) Perlecan: how does one molecule do so many things? Cell Mol Life Sci 63:2435–2445

    Article  CAS  PubMed  Google Scholar 

  32. Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183

    Article  CAS  PubMed  Google Scholar 

  33. Björnson Granqvist A, Ebefors K, Saleem MA, Mathieson PW, Haraldsson B, Nyström JS (2006) Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome. Am J Physiol Renal Physiol 291:F722–F730

    Article  PubMed  Google Scholar 

  34. Ha TS, Song CJ, Lee JH (2004) Effects of advanced glycosylation endproducts on perlecan core protein of glomerular epithelium. Pediatr Nephrol 19:1219–1224

    Article  PubMed  Google Scholar 

  35. Kanwar YS, Liu ZZ, Kumar A, Usman MI, Wada J, Wallner EI (1996) D-glucose-induced dysmorphogenesis of embryonic kidney. J Clin Invest 98:2478–2488

    Article  CAS  PubMed  Google Scholar 

  36. Alexander-Kaufman K, Harper C (2009) Transketolase: observations in alcohol-related brain damage research. Int J Biochem Cell Biol 41:717–720

    Article  CAS  PubMed  Google Scholar 

  37. Zhao J, Zhong CJ (2009) A review on research progress of transketolase. Neurosci Bull 25:94–99

    Article  PubMed  Google Scholar 

  38. Krishna SB, Alfonso LF, Thekkumkara TJ, Abbruscato TJ, Bhat GJ (2007) Angiotensin II induces phosphorylation of glucose-regulated protein-75 in WB rat liver cells. Arch Biochem Biophys 457:16–28

    Article  CAS  PubMed  Google Scholar 

  39. Hanniman EA, Lambert G, Inoue Y, Gonzalez FJ, Sinal CJ (2006) Apolipoprotein A-IV is regulated by nutritional and metabolic stress: involvement of glucocorticoids, HNF-4 alpha, and PGC-1 alpha. J Lipid Res 47:2503–2514

    Article  CAS  PubMed  Google Scholar 

  40. Kedishvili NY, Goodwin GW, Popov KM, Harris RA (2000) Mammalian methylmalonate-semialdehyde dehydrogenase. Methods Enzymol 324:207–218

    Article  CAS  PubMed  Google Scholar 

  41. Wong PT, Leong SF (1985) Delta-1-pyrroline-5-carboxylate dehydrogenase, a possible regulatory enzyme in transmitter glutamic acid metabolism—a preliminary report. Ann Acad Med Singapore 14:143–146

    CAS  PubMed  Google Scholar 

  42. Gagnon I, Duester G, Bhat PV (2003) Enzymatic characterization of recombinant mouse retinal dehydrogenase type 1. Biochem Pharmacol 65:1685–1690

    Article  CAS  PubMed  Google Scholar 

  43. Wei CC, Zhang SL, Chen YW, Guo DF, Ingelfinger JR, Bomsztyk K, Chan JS (2006) Heterogeneous nuclear ribonucleoprotein K modulates angiotensinogen gene expression in kidney cells. J Biol Chem 281:25344–25355

    Article  CAS  PubMed  Google Scholar 

  44. Zhang B, Zhang Y, Dagher MC, Shacter E (2005) Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. Cancer Res 65:6054–6062

    Article  CAS  PubMed  Google Scholar 

  45. Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ, Schwartz RJ (2002) Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development 129:1705–1714

    CAS  PubMed  Google Scholar 

  46. Wang J, Chen L, Li D, Yin Y, Wang X, Li P, Dangott LJ, Hu W, Wu G (2008) Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J Nutr 138:60–66

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (NSFC, 30672242). We are grateful to Xiu-Rong Zhang and Zhong-Hua Zhao for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Q., Xu, H., Wei, LM. et al. A comparative proteomic study of nephrogenesis in intrauterine growth restriction. Pediatr Nephrol 25, 1063–1072 (2010). https://doi.org/10.1007/s00467-009-1437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1437-x

Keywords

Navigation