Skip to main content

Oxidant/antioxidant status and hyperfiltration in young patients with type 1 diabetes mellitus

Abstract

Diabetic nephropathy (DN), a major cause of morbidity and mortality in diabetes, will develop within a subset of type 1 diabetes mellitus (T1DM) patients, and oxidative stress has been implicated in its pathogenesis. To investigate the relationship between indicators of early DN stages (hyperfiltration estimated by creatinine clearance ≥150 ml/min per 1.73 m2, microalbuminuria) and oxidative stress, a prospective study was conducted in 29 T1DM patients (age 13.89 ± 4.61 years) and 18 control subjects (age 13.23 ± 3.99 years). Blood samples were collected to assay for biomarkers of oxidative stress (malondialdehyde and carbonyl groups) and antioxidants (glutathione peroxidase, reduced glutathione, α-tocopherol, and β-carotene). With respect to control subjects, in T1DM patients, an increase was found in biomarkers of oxidative stress (p < 0.05), mainly due to the group of subjects with hyperfiltration, and a decrease in the ratio α-tocopherol/lipids (p < 0.05). In multiple regression analyses, age at disease onset, glycated hemoglobin, microalbuminuria, and oxidative stress biomarkers remained as explicative variables of hyperfiltration (R 2 adjusted = 0.731, p = 0.000). These findings support the importance of the oxidative damage to lipids and proteins, which is linked to hyperfiltration and which could contribute to the development of DN in patients with T1DM.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Martin-Gallán P, Carrascosa A, Gussinyé M, Domínguez C (2007) Oxidative stress in childhood type 1 diabetes: Results from a study covering the first 20 years of evolution. Free Radic Res 41:919–928

    Article  Google Scholar 

  2. 2.

    Marra G, Cotroneo P, Pitocco D, Manto A, Di Leo MA, Ruotolo V, Caputo S, Giardina B, Ghirlanda G, Santini SA (2002) Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes: a case for gender difference. Diabetes Care 25:370–375

    Article  Google Scholar 

  3. 3.

    Varvarovská J, Racek J, Stetina R, Sýkora J, Pomahacová R, Rusavý Z, Lacigová S, Trefil L, Siala K, Stozický F (2004) Aspects of oxidative stress in children with type 1 diabetes mellitus. Biomed Pharmacother 58:539–545

    Article  Google Scholar 

  4. 4.

    Firoozrai M, Nourbakhsh M, Razzaghy-Azar M (2007) Erythrocyte susceptibility to oxidative stress and antioxidant status in patients with type 1 diabetes. Diabetes Res Clin Pract 77:427–432

    CAS  Article  Google Scholar 

  5. 5.

    Barkai L, Vámosi I, Lukács K (1998) Enhanced progression of urinary albumin excretion in IDDM during puberty. Diabetes Care 21:1019–1023

    CAS  Article  Google Scholar 

  6. 6.

    Catherwood MA, Powell LA, Anderson P, McMaster D, Sharpe PC, Trimble ER (2002) Glucose-induced oxidative stress in mesangial cells. Kidney Int 61:599–608

    CAS  Article  Google Scholar 

  7. 7.

    Moorthi KM, Hogan D, Lurbe E, Redón J, Batlle D (2004) Nocturnal hypertension: will control of nighttime blood pressure prevent progression of diabetic renal disease? Curr Hypertens Rep 6:393–399

    CAS  Article  Google Scholar 

  8. 8.

    Raes A, Donckerwolcke R, Craen M, Hussein CM, Vande Walle J (2007) Renal hemodynamic changes and renal functional reserve in children with type I diabetes mellitus. Pediatr Nephrol 22:1903–1909

    Article  Google Scholar 

  9. 9.

    Stuveling EM, Hillege HL, Bakker SJL, Gans ROB, de Jong PE, de Zeeuw D (2003) C-reactive protein is associated with renal function abnormalities in a non-diabetic population. Kidney Int 63:654–661

    CAS  Article  Google Scholar 

  10. 10.

    Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress. Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B Analyt Technol Biomed Life Sci 827:76–82

    CAS  Article  Google Scholar 

  11. 11.

    Erciyas F, Taneli F, Arslan B, Uslu Y (2004) Glycemic control, oxidative stress, and lipid profile in children with type 1 diabetes mellitus. Arch Med Res 35:134–140

    CAS  Article  Google Scholar 

  12. 12.

    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    CAS  Article  Google Scholar 

  13. 13.

    Tian L, Cai Q, Wei H (1998) Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med 24:1477–1484

    CAS  Article  Google Scholar 

  14. 14.

    Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    CAS  Article  Google Scholar 

  15. 15.

    Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  Google Scholar 

  16. 16.

    Brigelius R, Muckel C, Akerboom TP, Sies H (1983) Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide. Biochem Pharmacol 32:2529–2534

    CAS  Article  Google Scholar 

  17. 17.

    Arnaud J, Fortis I, Blachier S, Kia D, Favier A (1991) Simultaneous determination of retinol, alpha-tocopherol and beta-carotene in serum by isocratic high-performance liquid chromatography. J Chromatogr 572:103–116

    CAS  Article  Google Scholar 

  18. 18.

    Martin-Gallán P, Carrascosa A, Gussinyé M, Domínguez C (2003) Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34:1563–1574

    Article  Google Scholar 

  19. 19.

    Ramakrishna V, Jailkhani R (2007) Evaluation of oxidative stress in Insulin Dependent Diabetes Mellitus (IDDM) patients. Diagn Pathol 2:22

    Article  Google Scholar 

  20. 20.

    Martin-Gallán P, Carrascosa A, Gussinyé M, Domínguez C (2005) Estimation of lipoperoxidative damage and antioxidant status in diabetic children: relationship with individual antioxidants. Free Radic Res 39:933–942

    Article  Google Scholar 

  21. 21.

    El-Far MA, Bakr MA, Farahat SE, Abd El-Fattah EA (2005) Glutathione peroxidase activity in patients with renal disorders. Clin Exp Nephrol 9:127–131

    CAS  Article  Google Scholar 

  22. 22.

    Bogdanovic R (2008) Diabetic nephropathy in children and adolescents. Pediatr Nephrol 23:507–525

    Article  Google Scholar 

  23. 23.

    Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M, for the International Diabetic Nephropathy Study Group (2005) The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54:2164–2171

    CAS  Article  Google Scholar 

  24. 24.

    Amin R, Turner C, van Aken S, Bahu TK, Watts A, Lindsell DR, Dalton RN, Dunger DB (2005) The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: the Oxford Regional Prospective Study. Kidney Int 68:1740–1749

    Article  Google Scholar 

  25. 25.

    Dahlquist G, Stattin EL, Rudberg S (2001) Urinary albumin excretion rate and glomerular filtration rate in the prediction of diabetic nephropathy; a long-term follow-up study of childhood onset type-1 diabetic patients. Nephrol Dial Transplant 16:1382–1386

    CAS  Article  Google Scholar 

  26. 26.

    Svensson M, Nyström L, Schön S, Dahlquist G (2006) Age at onset of childhood-onset type 1 diabetes and the development of end-stage renal disease: a nationwide population-based study. Diabetes Care 29:538–542

    Article  Google Scholar 

  27. 27.

    Levine DZ (2008) Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clnical and experimental uncertainties. Clin Sci 114:109–118

    CAS  Article  Google Scholar 

  28. 28.

    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  Article  Google Scholar 

  29. 29.

    Taghizadeh Afshari A, Shirpoor A, Farshid A, Saadatian R, Rasmi Y, Saboory E, Ilkhanizadeh B, Allameh A (2007) The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats. Food Chem 101:148–153

    Article  Google Scholar 

  30. 30.

    Thomas MC, Rosengard-Bärlund M, Mills V, Rönnback M, Thomas S, Forsblom C, Cooper ME, Taskinen MR, Viberti G, Groop PH (2006) Serum lipids and the progression of nephropathy in type 1 diabetes. Diabetes Care 29:317–322

    CAS  Article  Google Scholar 

  31. 31.

    Stone ML, Craig ME, Chan AK, Lee JW, Verge CF, Donaghue KC (2006) Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care 29:2072–2077

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We appreciate the collaboration of the parents whose children participated in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pilar Codoñer-Franch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernández-Marco, R., Codoñer-Franch, P., Pons Morales, S. et al. Oxidant/antioxidant status and hyperfiltration in young patients with type 1 diabetes mellitus. Pediatr Nephrol 24, 121–127 (2009). https://doi.org/10.1007/s00467-008-0961-4

Download citation

Keywords

  • Antioxidants
  • Creatinine clearance
  • Diabetic nephropathy
  • Microalbuminuria
  • Oxidative stress