Skip to main content

Advertisement

Log in

Global gene expression profiling of renal scarring in a rat model of pyelonephritis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Renal scarring is a serious complication of chronic pyelonephritis that occurs due to vesicoureteral reflux. In our study, we performed global expression profiling of the kidney during renal scarring formation in a rat pyelonephritis model. An inoculum of Escherichia coli was injected directly into the renal cortex. Histologically, renal scarring developed during the 3-to-4 week period after injection. The time-course expression profile of 18,442 genes was then analyzed using microarrays, followed by validation with real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Most of the genes found to be up-regulated during renal scarring are associated with immune and defense responses, including cytokines, chemokines and their receptors, complement factors, adhesion molecules and extracellular matrix proteins. These genes were up-regulated as early as 1 week after injection, when no fibrotic changes were yet evident, peaked at 2 weeks, and gradually decreased thereafter. However, a subset of cytokine genes was found to be persistently activated even at 6 weeks after injection, including interleukin (IL)-1β, transforming growth factor (TGF)-β, and IL-3. Further statistical analysis indicated that the pathways mediated by these cytokines are activated concomitantly with renal scarring formation. The products of these genes may thus potentially be novel non-invasive diagnostic or prognostic biomarkers of renal scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. International Reflux Study Committee (IRSC) (1981) Medical versus surgical treatment of primary vesicoureteral reflux: a prospective international reflux study in children. J Urol 125:277–283

    Article  Google Scholar 

  2. Meguid El Nahas A, Bello AK (2005) Chronic kidney disease: the global challenge. Lancet 365:331–340

    Article  CAS  Google Scholar 

  3. Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217

    Article  CAS  Google Scholar 

  4. Eikmans M, Baelde HJ, de Heer E, Bruijn JA (2002) RNA expression profiling as prognostic tool in renal patients: toward nephrogenomics. Kidney Int 62:1125–1135

    Article  CAS  Google Scholar 

  5. Choi H, Oh SJ, So Y, Lee DS, Lee A, Kim KM (1999) No further development of renal scarring after antireflux surgery in children with primary vesicoureteral reflux: review of the results of 99mtechnetium dimercapto-succinic acid renal scan. J Urol 162:1189–1192

    Article  CAS  Google Scholar 

  6. Svanborg Edén C, Kulhavy R, Mårild S, Prince SJ, Mestecky J (1985) Urinary immunoglobulins in healthy individuals and children with acute pyelonephritis. Scand J Immunol 21:305–313

    Article  Google Scholar 

  7. Hedges S, Stenqvist K, Lidin-Janson G, Martinell J, Sandberg T, Svanborg C (1992) Comparison of urine and serum concentrations of interleukin-6 in women with acute pyelonephritis or asymptomatic bacteriuria. J Infect Dis 166:653–656

    Article  CAS  Google Scholar 

  8. Agace WW, Hedges SR, Ceska M, Svanborg C (1993) Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J Clin Invest 92:780–785

    Article  CAS  Google Scholar 

  9. Martins SM, Darlin DJ, Lad PM, Zimmern PE (1994) Interleukin-1B: a clinically relevant urinary marker. J Urol 151:1198–1201

    Article  CAS  Google Scholar 

  10. Grandaliano G, Gesualdo L, Bartoli F, Ranieri E, Monno R, Leggio A, Paradies G, Caldarulo E, Infante B, Schena FP (2000) MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int 58:182–192

    Article  CAS  Google Scholar 

  11. Gbadegesin RA, Cotton SA, Coupes BM, Awan A, Brenchley PE, Webb NJ (2002) Plasma and urinary soluble adhesion molecule expression is increased during first documented acute pyelonephritis. Arch Dis Child 86:218–221

    Article  CAS  Google Scholar 

  12. Prat C, Domínguez J, Rodrigo C, Giménez M, Azuara M, Jiménez O, Galí N, Ausina V (2003) Elevated serum procalcitonin values correlate with renal scarring in children with urinary tract infection. Pediatr Infect Dis J 22:438–442

    PubMed  Google Scholar 

  13. Hewitson TD, Wu HL, Becker GJ (1995) Interstitial myofibroblasts in experimental renal infection and scarring. Am J Nephrol 15:411–417

    Article  CAS  Google Scholar 

  14. Matsumoto T, Haraoka M, Mizunoe Y, Takahashi K, Kubo S, Sakumoto M, Tanaka M, Kumazawa J (1995) Preventive effect of ulinastatin on renal scarring in rat model of pyelonephritis induced by direct or ascending infection with Serratia marcescens or Escherichia coli. Nephron 69:65–70

    Article  CAS  Google Scholar 

  15. Tullus K, Hörlin K, Svenson SB, Källenius G (1984) Epidemic outbreaks of acute pyelonephritis caused by nosocomial spread of P fimbriated Escherichia coli in children. J Infect Dis 150:728–736

    Article  CAS  Google Scholar 

  16. Söderhäll M, Normark S, Ishikawa K, Karlsson K, Teneberg S, Winberg J, Möllby R (1997) Induction of protective immunity after Escherichia coli bladder infection. J Clin Invest 100:364–372

    Article  Google Scholar 

  17. Hultgren SJ, Schwan WR, Schaeffer AJ, Duncan JL (1986) Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 54:613–620

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Langermann S, Möllby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Söderhäll M, Ishikawa K, Normark S, Koenig S (2000) Vaccination with fimH adhesion protect cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778

    Article  CAS  Google Scholar 

  19. Takahashi K, Muratani T, Saito M, Matsumoto T (2001) Inflammatory mediators in urosepsis using rat urinary tract infection models. Hinyokigeka 14:643–646

    Google Scholar 

  20. Kusaka M, Kuroyanagi Y, Kowa H, Nagaoka K, Mori T, Yamada K, Shiroki R, Kurahashi H, Hoshinaga K (2007) Genomewide expression profiles of rat model renal isografts from brain dead donors. Transplantation 83:62–70

    Article  CAS  Google Scholar 

  21. Hewitson TD, Darby IA, Bisucci T, Jones CL, Becker GJ (1998) Evolution of tubulointerstitial fibrosis in experimental renal infection and scarring. J Am Soc Nephrol 9:632–642

    CAS  PubMed  Google Scholar 

  22. Jahnukainen T, Chen M, Celsi G (2005) Mechanisms of renal damage owing to infection. Pediatr Nephrol 20:1043–1053

    Article  Google Scholar 

  23. Mezzano SA, Droguett MA, Burgos ME, Ardiles LG, Aros CA, Caorsi I, Egido J (2000) Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int 57:147–158

    Article  CAS  Google Scholar 

  24. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238

    Article  CAS  Google Scholar 

  25. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  CAS  Google Scholar 

  26. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292

    Article  CAS  Google Scholar 

  27. Eikmans M, Baelde HJ, Hagen EC, Paul LC, Eilers PH, De Heer E, Bruijn JA (2003) Renal mRNA levels as prognostic tools in kidney diseases. J Am Soc Nephrol 14:899–907

    Article  CAS  Google Scholar 

  28. Tullus K, Wang JA, Lu Y, Burman LG, Brauner A (1996) Interleukin-1 alpha and interleukin-6 in the urine, kidney, and bladder of mice inoculated with Escherichia coli. Pediatr Nephrol 10:453–457

    Article  CAS  Google Scholar 

  29. Haraoka M, Senoh K, Ogata N, Furukawa M, Matsumoto T, Kumazawa J (1996) Elevated interleukin-8 levels in the urine of children with renal scarring and/or vesicoureteral reflux. J Urol 155:678–680

    Article  CAS  Google Scholar 

  30. Haraoka M, Matsumoto T, Takahashi K, Kubo S, Tanaka M, Kumazawa J (1994) Suppression of renal scarring by prednisolone combined with ciprofloxacin in ascending pyelonephritis in rats. J Urol 151:1078–1080

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Muratani for providing the SEC strain, and S. Nagao for technical assistance. We are also very grateful to H. Kogo, M. Taniguchi, T. Ohye, and H. Inagaki for their helpful discussions. This study was supported by a grant-in-aid for 21st Century COE program from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Ichino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichino, M., Mori, T., Kusaka, M. et al. Global gene expression profiling of renal scarring in a rat model of pyelonephritis. Pediatr Nephrol 23, 1059–1071 (2008). https://doi.org/10.1007/s00467-007-0717-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0717-6

Keywords

Navigation