Skip to main content
Log in

Expression of SDF-1/CXCR4 in injured human kidneys

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The chemokine SDF-1α is involved in migration, survival, and development of multiple cells, most notably of hematopoietic stem cells (HSC) expressing its ligand CXCR4. Recently, we have shown engraftment of human HSC in the ischemically injured murine kidney, presumably mediated by SDF-1α. To further investigate a possible role of SDF-1α in the recruitment of CXCR4+ cells in human renal disease of varying etiologies, we immunostained human biopsies of immunoglobulin (Ig)A nephropathy, minimal-change nephrotic syndrome, focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis, chronic pyelonephritis, and acute tubular necrosis (ATN) for SDF-1α, CXCR4, and CD45, a pan-hematopoietic marker. Irrespective of the diagnosis, intense SDF-1α immunoreactivity was localized to distal tubules and collecting ducts, whereas CXCR4 showed intense staining in both distal and proximal tubules. In addition, whereas varying degrees of CD45+ cell infiltrates were observed in all biopsies, we found focal infiltrates of CXCR4+ cells mostly localized to the corticomedullary junction only in ischemic ATN. This correlated with more extensive staining for SDF-1α in these sites. In all investigated renopathologic conditions, CD45+ leukocyte recruitment to the kidney seems not to be driven by SDF-1α/CXCR4 interaction. A contribution of SDF-1α for influx of CXCR4+ cells in the vicinity of arcuate vessels is suggested only in human ATN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109

    Article  CAS  Google Scholar 

  2. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    CAS  PubMed  Google Scholar 

  3. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835

    Article  CAS  Google Scholar 

  4. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez-A C, Mellado M (1999) The chemokine SDF-1a triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13:1699–1710

    Article  CAS  Google Scholar 

  5. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  CAS  Google Scholar 

  6. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  Google Scholar 

  7. Ara T, Tokoyoda K, Okamoto R, Koni PA, Nagasawa T (2005) The role of CXCL12 in the organ-specific process of artery formation. Blood 105:3155–3161

    Article  CAS  Google Scholar 

  8. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  CAS  Google Scholar 

  9. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  CAS  Google Scholar 

  10. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA (2001) Plasma elevation of SDF-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97:3354–3360

    Article  CAS  Google Scholar 

  11. Blau HM, Brazelton TR, Weismann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841

    Article  CAS  Google Scholar 

  12. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, Kahn J, Spiegel A, Dar A, Samira S, Goichberg P, Kalinkovich A, Arenzana-Seisdedos F, Nagler A, Hardan I, Revel M, Shafritz DA, Lapidot T (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112:160–169

    Article  CAS  Google Scholar 

  13. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  Google Scholar 

  14. Shyu WC, Lee YJ, Liu DD, Lin SZ, Li H (2006) Homing genes, cell therapy and stroke. Front Biosci 11:899–907

    Article  CAS  Google Scholar 

  15. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67:1772–1784

    Article  Google Scholar 

  16. Dekel B, Shezen E, Friedman S, Katchman H, Margalit R, Nagler A, Reisner Y (2006) Transplantation of human CD34+CD133+ hematopoietic stem cells into ischemic and growing kidneys suggests role in vasculogenesis but not tubulogenesis. Stem Cells 24:1185–1193

    Article  CAS  Google Scholar 

  17. Dekel B, Metsuyanim S, Schmidt-Ott KM, Fridman E, Jacob-Hirsch J, Simon A, Pinthus J, Mor Y, Barasch J, Amariglio N, Reisner Y, Kaminski N, Rechavi G (2006) Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res 66:6040–6049

    Article  CAS  Google Scholar 

  18. Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA, Melamed J, Semenza GL (2005) Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65:6178–6188

    Article  CAS  Google Scholar 

  19. Anders HJ, Ninichuk V, Schlondorff D (2006) Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonists. Kidney Int 69:29–32

    Article  Google Scholar 

  20. Vielhauer V, Anders HJ, Mack M, Cihak J, Strutz F, Stangassinger M, Luckow B, Grone HJ, Schlondorff D (2001) Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2-and 5-positive leukocytes. J Am Soc Nephrol 12:1173–1187

    CAS  PubMed  Google Scholar 

  21. Singbartl K, Ley K (2004) Leukocyte recruitment and acute renal failure. J Mol Med 82:91–101

    Article  Google Scholar 

  22. Molitoris BA, Sandoval R, Sutton TA (2002) Endothelial injury and dysfunction in ischemic acute renal failure. Crit Care Med 30(5 Suppl):S235–S240

    Article  Google Scholar 

  23. Molitoris BA, Sutton TA (2004) Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 66:496–499

    Article  Google Scholar 

  24. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants from the Israel Scientific Foundation Physician-Scientist Grant Award, Sheba Career Development Award, and Moriss Kahn Career Development Award (BD). We thank Anat Shlosberg for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Dekel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotan, D., Sheinberg, N., Kopolovic, J. et al. Expression of SDF-1/CXCR4 in injured human kidneys. Pediatr Nephrol 23, 71–77 (2008). https://doi.org/10.1007/s00467-007-0648-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0648-2

Keywords

Navigation