Skip to main content

Advertisement

Log in

Promotion of oxidative stress in kidney of rats loaded with cystine dimethyl ester

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Cystinosis is a systemic genetic disease caused by a lysosomal transport deficiency accumulating cystine in most tissues. Although tissue damage might depend on cystine accumulation, the mechanisms of tissue damage are not fully understood. Studies performed in fibroblasts of cystinotic patients and in kidney cells loaded with cystine dimethyl ester (CDME) suggest that apoptosis is enhanced in this disease. Considering that oxidative stress is a known apoptosis inducer, our main objective was to investigate the effects of CDME loading on several parameters of oxidative stress in the kidney of young rats. Animals were injected twice a day with 1.6 μmol/g body weight CDME and/or 0.26 μmol/g body weight cysteamine (CSH) from the 16th to the 20th postpartum day and killed after 1 or 12 h. CDME induced lipoperoxidation and protein carbonylation and stimulated superoxide dismutase, glutathione peroxidase (GPx), and catalase activities, probably through the formation of superoxide anions, hydrogen peroxide, and hydroxyl free radicals. Coadministration of CSH, the drug used to treat cystinotic patients, prevented, at least in part, those effects, possibly acting as a scavenger of free radicals. These results suggest that the induction of oxidative stress might be one of the mechanisms leading to tissue damage in cystinotic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore S, Callen D, Gribouval O, Broyer M, Bates G, van’t Hoff W, Antignac C (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18:319–324

    CAS  PubMed  Google Scholar 

  2. Gahl WA, Thoene JG, Schneider JA (2002) Cystinosis. N Engl J Med 347:111–121

    PubMed  Google Scholar 

  3. Foreman JW, Bowring MA, Lee J, States B, Segal S (1987) Effect of cystine dimethyl ester on renal solute handling and isolated renal tubule transport in the rat. A new model of the Fanconi syndrome. Metabolism 36:1185–1191

    CAS  PubMed  Google Scholar 

  4. Foreman JW, Benson L (1990) Effect of cystine loading and cystine dimethyl ester on renal brushborder membrane-transport. Biosci Rep 10:455–459

    CAS  PubMed  Google Scholar 

  5. Foreman JW, Benson LL, Wellons M, Avner ED, Sweeney W, Nissim L, Nissim I (1995) Metabolic studies of rat renal tubule cells loaded with cystine: the cystine dimethyl ester model of cystinosis. J Am Soc Nephrol 6:269–272

    CAS  PubMed  Google Scholar 

  6. Salmon RF, Baum M (1990) Intracellular cystine loading inhibits transport in the rabbit proximal convoluted tubule. J Clin Invest 85:340–344

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ben-Nun A, Bashan N, Potashnik R, Cohen-Luria R, Moran A (1993) Cystine loading induces Fanconi’s syndrome in rats: in vivo and vesicle studies. Am J Physiol 265:839–844

    Google Scholar 

  8. Coor C, Salmon RF, Quigley R, Marver D, Baum M (1991) Role of adenosine-triphosphate (ATP) and Na+, K+-ATPase in the inhibition of proximal tubule transport with intracellular cystine loading. J Clin Invest 87:955–961

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilmer MJ, de Graaf-Hess A, Blom HJ, Dijkman HB, Monnens LA, van den Heuvel LP, Levtchenko EM (2005) Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells. Biochem Biophys Res Commun 337:610–614

    CAS  PubMed  Google Scholar 

  10. Laube GF, Shah V, Stewart VC, Hargreaves IP, Haq MR, Heales SJ, van’t Hoff WG (2006) Glutathione depletion and increased apoptosis rate in human cystinotic proximal tubular cells. Pediatr Nephrol 21:503–509

    PubMed  Google Scholar 

  11. Park MA, Helip-Wooley A, Thoene J (2002) Lysosomal cystine storage increases apoptosis in cultured human fibroblasts and renal proximal tubule epithelial cells. J Am Soc Nephrol 13:2878–2887

    CAS  PubMed  Google Scholar 

  12. Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, Oberhammer FA, Buttyan R (1994) Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmacol 128:169–178

    CAS  PubMed  Google Scholar 

  13. Cantoni O, Brandi G, Albano A, Cattabeni F (1995) Action of cystine in the cytotoxic response of Escherichia coli cells exposed to hydrogen peroxide. Free Radic Res 22:275–283

    CAS  PubMed  Google Scholar 

  14. Levtchenko E, Graaf-Hess A, Wilmer AM, van der Heuvel L, Monnens L, Blom H (2005) Altered status of glutathione and its metabolites in cystinotic cells. Nephrol Dial Transplant 20:1828–1832

    CAS  PubMed  Google Scholar 

  15. Mannucci L, Pastore A, Rizzo C, Piemonte F, Rizzoni G, Emma F (2006) Impaired activity of the gamma-glutamyl cycle in nephropathic cystinosis fibroblasts. Pediatr Res 59:332–335

    CAS  PubMed  Google Scholar 

  16. Gahl WA, Thoene JG, Schneider JA (2001) Cystinosis: a disorder of lysosomal membrane transport, In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 5085–5108

    Google Scholar 

  17. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    CAS  PubMed  Google Scholar 

  18. Kehrer JP (2000) The haber-weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    CAS  PubMed  Google Scholar 

  19. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    CAS  PubMed  Google Scholar 

  20. Reznick AZ, Packer L (1994) Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    CAS  PubMed  Google Scholar 

  21. Uchida K (2003) Histidine and lysine as targets of oxidative modification. Amino Acids 25:249–257

    CAS  PubMed  Google Scholar 

  22. Levine RL, Garland D, Oliver CN, Amici I, Climent AG, Lenz BW, Ahn S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    CAS  PubMed  Google Scholar 

  23. Aebi H (1984) Catalase, in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  24. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    CAS  PubMed  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  26. Leech NL, Barrett KC, Morgan GA (2005) SPSS for intermediate statistics. Use and interpretation, 2nd edn. Lawrence Erlbaum Associates, London, pp 46–62

    Google Scholar 

  27. Winterbourn CC, Metodiewa CD (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27:322–328

    CAS  PubMed  Google Scholar 

  28. Rosenberg PA, Li Y, Ali S, Altiok N, Back SA, Volpe JJ (1999) Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture. J Neurochem 73:476–484

    CAS  PubMed  Google Scholar 

  29. Winterbourn CC, Peskin AV, Parsons-Mair HN (2002) Thiol oxidase activity of copper, zinc superoxide dismutase. J Biol Chem 277:1906–1911

    CAS  PubMed  Google Scholar 

  30. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    CAS  PubMed  Google Scholar 

  31. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    CAS  PubMed  Google Scholar 

  32. Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9:169–181

    CAS  PubMed  Google Scholar 

  33. Xie J, Guo Q (2006) Apoptosis antagonizing transcription factor protects renal tubule cells against oxidative damage and apoptosis induced by ischemia-reperfusion. J Am Soc Nephrol 17:3336–3346

    CAS  PubMed  Google Scholar 

  34. Chevalier RL (2006) Pathogenesis of renal injury in obstructive uropathy. Curr Opin Pediatr 18:153–160

    PubMed  Google Scholar 

  35. Xie J, Shaikh ZA (2006) Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci 91:299–308

    CAS  PubMed  Google Scholar 

  36. Furfaro AL, Menini S, Patriarca S, Pesce C, Odetti P, Cottalasso D, Marinari UM, Pronzato MA, Traverso N (2005) HNE-dependent molecular damage in diabetic nephropathy and its possible prevention by N-acetyl-cysteine and oxerutin. Biofactors 24:291–298

    CAS  PubMed  Google Scholar 

  37. Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225–233

    CAS  PubMed  Google Scholar 

  38. Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248

    CAS  PubMed  Google Scholar 

  39. Liu W, Kato M, Akhand AA, Hayakawa A, Suzuki H, Miyata T, Kurokawa K, Hotta Y, Ishikawa N, Nakashima I (2000) 4-hydroxynonenal induces a cellular redox status-related activation of the caspase cascade for apoptotic cell death. J Cell Sci 113:635–641

    CAS  PubMed  Google Scholar 

  40. Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 30:1008–1018

    CAS  PubMed  Google Scholar 

  41. Tardy C, Andrieu-Abadie N, Salvayre R, Levade T (2004) Lysosomal storage diseases: is impaired apoptosis a pathogenic mechanism? Neurochem Res 29:871–880

    CAS  PubMed  Google Scholar 

  42. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Park MA, Pejovic V, Kerisit KG, Junius S, Thoene JG (2006) Increased apoptosis in cystinotic fibroblasts and renal proximal tubule epithelial cells results from cysteinylation of protein kinase C (delta). J Am Soc Nephrol 17:3167–3175

    CAS  PubMed  Google Scholar 

  44. Rokutan K, Johnston Jr, Kawai K (1994) Oxidative stress induces S-thiolation of specific proteins in cultured gastric mucosal cells. Am J Physiol 266:G247–G254

    CAS  PubMed  Google Scholar 

  45. Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Park MA, Thoene JG (2005) Potential role of apoptosis in development of the cystinotic phenotype. Pediatr Nephrol 20:441–446

    PubMed  Google Scholar 

  47. Jiang S, Moriarty-Craige SE, Orr M, Cai J, Sternberg P, Jones DP (2005) Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. Invest Ophtalmol Vis Sci 46:1054–1061

    Google Scholar 

  48. Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    CAS  PubMed  Google Scholar 

  49. Hatano E, Tanaka A, Kanazawa A, Tsuyuki S, Tsunekawa S, Iwata S, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V (2004) Inhibition of tumor necrosis factor-induced apoptosis in transgenic mouse liver expressing creatine kinase. Liver Int 24:384–393

    CAS  PubMed  Google Scholar 

  50. Bergeron M, Gougoux A, Noël J, Parent L (2001) The renal Fanconi syndrome, In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds), The metabolic & molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York 2001 pp 5023–5038

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e tecnológico (CNPq-Brazil), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS, RS-Brazil) and Programa de Núcleos de Excelência (PRONEX-CNPq /FAPERGS-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rech, V.C., Feksa, L.R., Arevalo do Amaral, M.F. et al. Promotion of oxidative stress in kidney of rats loaded with cystine dimethyl ester. Pediatr Nephrol 22, 1121–1128 (2007). https://doi.org/10.1007/s00467-007-0494-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0494-2

Keywords

Navigation