Skip to main content

Advertisement

Log in

Serum and urine fibronectin levels in children with vesicoureteral reflux

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The study objective was to assess serum and urine fibronectin (FN) levels in children with vesicoureteral reflux (VUR) depending on reflux grade and urine osmolality. The study group (1) consisted of 54 VUR children, median age 4.28 (range 0.6–15) years: subgroup A, 19 children with grade II; subgroup B, 19 with grade III; and subgroup C, 16 with grade IV or V VUR. The control group (2) included 27 healthy children. The immunoenzymatic method enzyme immunoassay (EIA) was used to determine serum soluble and urine FN levels, with an osmometer to measure urinary osmolality. The median urine FN in VUR children was 224.1 (15.4–3537) ng/mg creatinine (Cr), compared with the control group: 137.9 (20.3–670.6) ng/mg Cr (p < 0.05), whereas median serum FN was 395.0 (13.0–779.9) ng/ml and 121.9 (25–345.1) ng/ml (p < 0.05), respectively. A detailed analysis showed that only in subgroup C was the level of urinary FN significantly higher than in the control group (p < 0.01). However, serum concentration was elevated in all VUR children (A–C) compared with controls (p < 0.01). Reduced osmolality, below 800 mOsm/kg H2O, was observed in subgroup C. Negative correlation between urinary osmolality and urinary FN was found (r = −0.426, p < 0.01). In children with VUR, serum FN increased with reflux grade, whereas its urinary level was elevated only in grade IV and V reflux with impaired urine concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sargent MA (2000) What is the normal prevalence of vesicoureteral reflux? Pediatr Radiol 30:587–593

    Article  CAS  Google Scholar 

  2. Gordon I, Barkovics M, Pindoria S, Cole TJ, Woolf AS (2003) Primary vesicoureteric reflux as a predictor of renal damage in children hospitalized with urinary tract infection: a systematic review and meta-analysis. J Am Soc Nephrol 14:739–744

    Article  Google Scholar 

  3. Silva JM, Diniz JS, Silva AC, Azevedo MV, Pimenta MR, Oliveira EA (2006) Predictive factors of chronic kidney disease in severe vesicoureteral reflux. Pediatr Nephrol 21:1285–1292

    Article  Google Scholar 

  4. International Reflux Study Committee (1981) Medical versus surgical treatment of primary vesicoureteral reflux: report of the International Reflux Study Committee. Pediatrics 67:392–400

    Google Scholar 

  5. Orellana P, Baquedano P, Rangarajan V, Zhao JH, Eng ND, Fettich J, Chaiwatanarat T, Sonmezoglu K, Kumar D, Park YH, Samuel AM, Sixt R, Bhatnagar V, Padhy AK (2004) Relationship between acute pyelonephritis, renal scarring, and vesicoureteral reflux. Results of a coordinated research project. Pediatr Nephrol 19:1122–1126

    Article  Google Scholar 

  6. Maruyama T, Hayashi Y, Nakane A, Sasaki S, Kohri K (2005) Intermittent pressure-loading increases transforming growth factor-beta-1 secretion from renal tubular epithelial cells: in vitro vesicoureteral reflux model. Urol Int 75:150–158

    Article  CAS  Google Scholar 

  7. Solari V, Owen D, Puri P (2005) Association of transforming growth factor-beta 1 gene polymorphism with reflux nephropathy. J Urol 174:1609–1611

    Article  CAS  Google Scholar 

  8. Abbate M, Zoja C, Rottoli D, Corna D, Tomasoni S, Remuzzi G (2002) Proximal tubular cells promote fibrogenesis by TGF-beta-1-mediated induction of peritubular myofibroblasts. Kidney Int 61:2066–2077

    Article  CAS  Google Scholar 

  9. Wang J, Konda R, Sato H, Sakai K, Ito S, Orikasa S (2001) Clinical significance of urinary interleukin-6 in children with reflux nephropathy. J Urol 165:210–214

    Article  CAS  Google Scholar 

  10. Schwarzbauer JE, Tamkun JW, Lemischka IR, Hynes RO (1993) Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35:421–431

    Article  Google Scholar 

  11. Hynes RO, Yamada KMJ (1982) Fibronectins: multifunctional modular glycoproteins. Cell Biol 95:369–377

    Article  CAS  Google Scholar 

  12. Proctor RA (1987) Fibronectin: a brief overview of its structure, function, and physiology. Rev Infect Dis 9(Suppl 4):S317–S321

    Article  CAS  Google Scholar 

  13. Tamkun JW, Hynes RO (1983) Plasma fibronectin is synthesized and secreted by hepatocytes. J Biol Chem 258:4641–4647

    CAS  PubMed  Google Scholar 

  14. Assmann KJ, Koene RA, Wetzels JF (1995) Familial glomerulonephritis characterized by massive deposits of fibronectin. Am J Kidney Dis 25:781–791

    Article  CAS  Google Scholar 

  15. Gwinner W, Jackle-Meyer I, Stolte H (1983) Origin of urinary fibronectin. Lab Invest 69:250–255

    Google Scholar 

  16. Janssen U, Eitner F, Kunter U, Ostendorf T, Wolf G, Chaponnier C, Gabbiani G, Kerjaschki D, Floege J (2003) Extracellular actin impairs glomerular capillary repair in experimental mesangioproliferative glomerulonephritis. Nephron Exp Nephrol 93:158–167

    Article  Google Scholar 

  17. Eikmans M, Baelde HJ, Hagen EC, Paul LC, Eilers PH, De Heer E, Bruijn JA (2003) Renal mRNA levels as prognostic tools in kidney diseases. J Am Soc Nephrol 14:899–907

    Article  CAS  Google Scholar 

  18. Yoshioka K, Takemura T, Matsubara K, Miyamoto H, Akano N, Maki S (1987) Immunohistochemical studies of reflux nephropathy. The role of extracellular matrix, membrane attack complex, and immune cells in glomerular sclerosis. Am J Pathol 129:223–231

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chertin B, Solari V, Reen DJ, Farkas A, Puri P (2002) Up-regulation of angiotensin-converting enzyme (ACE) gene expression induces tubulointerstitial injury in reflux nephropathy. Pediatr Surg Int 18:635–639

    Article  Google Scholar 

  20. Funabiki K (1989) Immunohistochemical analysis of extracellular components on the glomerular sclerosis in patients with glomerulonephritis and diabetic nephropathy. Nippon Jinzo Gakkai Shi 31:111–120

    CAS  PubMed  Google Scholar 

  21. Kilis-Pstrusinska K, Wikiera-Magott I, Zwolinska D, Kopec W, Rzeszutko M (2002) Analysis of collagen IV and fibronectin in blood and urine in evaluation of nephrotic fibrosis in children with chronic glomerulonephritis. Med Sci Monit 8:CR713–CR719

    CAS  PubMed  Google Scholar 

  22. Zhang YZ, Lee HS (1997) Quantitative changes in the glomerular basement membrane components in human membranous nephropathy. J Pathol 183:8–15

    Article  CAS  Google Scholar 

  23. Alekseevskikh IuG, Bobkova VP, Razdol’kina TI, Gozalishvili TV, Sergeeva TV (1983) Fibronectin levels in blood, urine and kidney in children with kidney diseases. Arkh Patol 55:33–36

    Google Scholar 

  24. Solari V, Unemoto K, Piaseczna Piotrowska A, Puri P (2004) Increased expression of mast cells in reflux nephropathy. Pediatr Nephrol 19:157–163

    Article  Google Scholar 

  25. Menendez V, Fernandez-Suarez A, Galan JA, Perez M, Garcia-Lopez F (2005) Diagnosis of bladder cancer by analysis of urinary fibronectin. Urology 65:284–289

    Article  Google Scholar 

  26. Hegele A, Heidenreich A, Varga Z, von Knobloch R, Olbert P, Kropf J, Hofmann R (2003) Cellular fibronectin in patients with transitional cell carcinoma of the bladder. Urol Res 30:363–366

    CAS  PubMed  Google Scholar 

  27. Kawauchi A, Watanabe H, Miyoshi K (1996) Early morning urine osmolality in nonenuretic and enuretic children. Pediatr Nephrol 10:696–698

    Article  CAS  Google Scholar 

  28. Korzeniecka-Kozerska A, Zoch-Zwierz W, Wasilewska A (2005) Functional bladder capacity and urine osmolality in children with primary monosymptomatic nocturnal enuresis. Scand J Urol Nephrol 39:56–61

    Article  Google Scholar 

  29. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    Article  CAS  Google Scholar 

  30. Goldraich IH, Goldraich NP, Ramos OL (1983) Classification of reflux nephropathy according to findings at DMSA renal scan. Eur J Pediatr 148:212–218

    Google Scholar 

  31. Chana RS, Martin J, Rahman EU, Wheeler DC (2003) Monocyte adhesion to mesangial matrix modulates cytokine and metalloproteinase production. Kidney Int 63:889–898

    Article  CAS  Google Scholar 

  32. Jodal U, Smellie JM, Lax H, Hoyer PF (2006) Ten-year results of randomized treatment of children with severe vesicoureteral reflux. Final report of the International Reflux Study in Children. Pediatr Nephrol 21:785–792

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Wasilewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabasińska, A., Zoch-Zwierz, W., Wasilewska, A. et al. Serum and urine fibronectin levels in children with vesicoureteral reflux. Pediatr Nephrol 22, 1173–1179 (2007). https://doi.org/10.1007/s00467-007-0477-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0477-3

Keywords

Navigation