Skip to main content
Log in

The challenge of renal function in heart transplant children

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Renal dysfunction may occur after pediatric heart transplantation and impacts on long-term prognosis. This study aims to review the incidence and mechanisms of chronic nephropathy following heart transplantation, and suggest therapeutic directions. The proportion of pediatric heart-transplant recipients with impaired renal function varies from 22 to 57%, and end-stage renal failure from 3 to 10%, depending on the method used for estimating the glomerular filtration rate. The pathophysiology of renal dysfunction is in part due to calcineurin inhibitor-induced renal vasoconstriction, through activation of the intrarenal renin-angiotensin system, TGF-β1 upregulation and TGF-β1 gene polymorphisms. Overproduction of angiotensin II, associated with angiotensin-converting-enzyme genotype, might be associated with poor prognosis and pharmacological factor gene polymorphisms, and may contribute to variation of calcineurine inhibitor exposure in the kidney. Strategies to prevent renal dysfunction include reducing calcineurine inhibitor exposure or delaying calcineurine inhibitor administration from the early post-transplant period. Calcium channel blockers and angiotensin-converting-enzyme inhibitors, blockade of angiotensin II, or anti-TGF-β1 antibodies might limit nephrotoxicity. No accurate marker can predict the potential of renal lesions to develop. Lowering calcineurine inhibitors levels with immunosuppressive agents that are either less nephrotoxic or non-nephrotoxic should be formally studied. Of high interest is the impact of genetic polymorphism on the development of renal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Phan V, West LJ, Stephens D, Hebert D (2003) Renal complications following heart transplantation in children: a single-center study. Am J Transplant 3:214–218

    PubMed  Google Scholar 

  2. Pradhan M, Leonard MB, Bridges ND, Jabs KL (2002) Decline in renal function following thoracic organ transplantation in children. Am J Transplant 2:652–657

    PubMed  Google Scholar 

  3. Laine J, Jalanko H, Leijala M, Sairanen H, Holmberg C (1997) Kidney function in cyclosporine-treated pediatric heart transplant recipients. J Heart Lung Transplant 16:1217–1224

    CAS  PubMed  Google Scholar 

  4. Sigfusson G, Fricker FJ, Bernstein D, Addonizio LJ, Baum D, Hsu DT, Chin C, Miller SA, Boyle GJ, Miller J, Lawrence KS, Douglas JF, Griffith BP, Reitz BA, Michler RE, Rose EA, Webber SA (1997) Long-term survivors of pediatric heart transplantation: a multicenter report of sixty-eight children who have survived longer than five years. J Pediatr 130:862–871

    CAS  PubMed  Google Scholar 

  5. Haverich A, Hirt SW, Wagenberth I, Luhmer I, Ziemer G, Kallfelz HC (1992) Thoracic organ transplantation in the paediatric age group: the Hannover experience. Eur J Pediatr 151 Suppl 1:S65–S69

    PubMed  Google Scholar 

  6. Alonso EM (2004) Long-term renal function in pediatric liver and heart recipients. Pediatr Transplant 8:381–385

    PubMed  Google Scholar 

  7. Veillon S, Caillard S, Epailly E, Eisenmann B, Hannedouche T, Moulin B (2002) Chronic renal failure after cardiac transplantation: predictive factors and influence on mortality-results of a monocenter study in 141 Patients. Transplant Proc 34:2819–2820

    CAS  PubMed  Google Scholar 

  8. van Gelder T, Balk AH, Zietse R, Hesse C, Mochtar B, Weimar W (1998) Renal insufficiency after heart transplantation: a case-control study. Nephrol Dial Transplant 13:2322–2326

    PubMed  Google Scholar 

  9. Jayasena SD, Riaz A, Lewis CM, Neild GH, Thompson FD, Woolfson RG (2001) Outcome in patients with end-stage renal disease following heart or heart-lung transplantation receiving peritoneal dialysis. Nephrol Dial Transplant 16:1681–1685

    CAS  PubMed  Google Scholar 

  10. Zuckermann A, Klepetko W (2004) Use of cyclosporine in thoracic transplantation. Transplant Proc 36 Suppl 2:331S–336S

    CAS  PubMed  Google Scholar 

  11. Rice JE, Shipp AT, Carlin JB, Vidmar SI, Weintraub RG (2002) Late reduction in cyclosporine dosage does not improve renal function in pediatric heart transplant recipients. J Heart Lung Transplant 21:1109–1112

    PubMed  Google Scholar 

  12. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children and adolescents. Pediatr Clin North Am 34:571–590

    CAS  PubMed  Google Scholar 

  13. English RF, Pophal SA, Bacanu SA, Fricker J, Boyle GJ, Ellis D, Harker K, Sutton R, Miller SA, Law YM, Pigula FA, Webber SA (2002) Long-term comparison of tacrolimus and cyclosporine-induced nephrotoxicity in pediatric heart-transplant recipients. Am J Transplant 2:769–773

    CAS  PubMed  Google Scholar 

  14. Lindelow B, Bergh CH, Herlitz H, Waagstein F (2000) Predictors and evolution of renal function during 9 years following heart transplantation. J Am Soc Nephrol 11:951–957

    CAS  PubMed  Google Scholar 

  15. Di Filippo S, Zeevi A, McDade KK, Boyle GJ, Miller SA, Gandhi SK, Webber SA (2005) Impact of TGF-β1 gene polymorphisms on late renal function in pediatric heart transplantation. Hum Immunol 66:133–139

    PubMed  Google Scholar 

  16. Goldstein DJ, Zuech N, Sehgal V, Weinberg AD, Drusin R, Cohen D (1997) Cyclosporine-associated end-stage nephropathy after cardiac transplantation: incidence and progression. Transplantation 63:664–668

    CAS  PubMed  Google Scholar 

  17. Lewis RM, Verani RR, Vo C, Katz SM, Van Buren CT, Radovancevic B, Kerman RH, Frazier OH, Kahan BD (1994) Evaluation of chronic renal disease in heart transplant recipients: importance of pretransplantation native kidney histologic evaluation. J Heart Lung Transplant 13:376–380

    CAS  PubMed  Google Scholar 

  18. Baran DA, Galin ID, Gass AL (2004) Calcineurin inhibitor-associated early renal insufficiency in cardiac transplant recipients: risk factors and strategies for prevention and treatment. Am J Cardiovasc Drugs 4:21–29

    CAS  PubMed  Google Scholar 

  19. Shihab FS, Bennett WM, Tanner AM, Andoh TF (1997) Mechanisms of fibrosis in experimental tacrolimus nephrotoxicity. Transplantation 64:1829–1837

    CAS  PubMed  Google Scholar 

  20. Khanna A, Plummer M, Bromberek C, Bresnahan B, Hariharan S (2002) Expression of TGF-beta and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity. Kidney Int 62:2257–2263

    CAS  PubMed  Google Scholar 

  21. Yamamoto T, Noble NA, Miller DE, Border WA (1994) Sustained expression of TGF-beta 1 underlies development of progressive kidney fibrosis. Kidney Int 45:916–927

    CAS  PubMed  Google Scholar 

  22. Prashar Y, Khanna A, Sehajpal P, Sharma VK, Suthanthiran M (1995) Stimulation of transforming growth factor-beta 1 transcription by cyclosporine. FEBS Lett 358:109–112

    CAS  PubMed  Google Scholar 

  23. Shin GT, Khanna A, Ding R, Sharma VK, Lagman M, Li B, Suthanthiran M (1998) In vivo expression of transforming growth factor-beta1 in humans: stimulation by cyclosporine. Transplantation 65:131–138

    Google Scholar 

  24. Lacha J, Hubacek JA, Potmesil P, Viklicky O, Malek I, Vitko S (2001) TGF-beta I gene polymorphism in heart transplant recipients-effect on renal function. Ann Transplant 6:39–43

    CAS  PubMed  Google Scholar 

  25. Baan CC, Balk AH, Holweg CT, Van Riemsdijk IC, Maat LP, Vantrimpont PJ, Niesters HG, Weimar W (2000) Renal failure after clinical heart transplantation is associated with the TGF-beta 1 codon 10 gene polymorphism. J Heart Lung Transplant 19:866–872

    CAS  PubMed  Google Scholar 

  26. Woolfson RG, Neild GH (1997) Cyclosporine nephrotoxicity following cardiac transplantation. Nephrol Dial Transplant 12:2054–2056

    CAS  PubMed  Google Scholar 

  27. Zheng HX, Zeevi A, Schuetz E, Lamba J, McCurry K, Griffith BP, Webber S, Ristich J, Dauber J, Iacono A, Grgurich W, Zaldonis D, McDade K, Zhang J, Burckart GJ (2004) Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol 44:135–140

    CAS  PubMed  Google Scholar 

  28. Zheng HX, Webber S, Zeevi A, Schuetz E, Zhang J, Bowman P, Boyle G, Law Y, Miller S, Lamba J, Burckart GJ (2003) Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant 3:477–483

    CAS  PubMed  Google Scholar 

  29. Boucek MM, Edwards LB, Keck BM, Trulock EP, Taylor DO, Hertz MI (2004) Registry for the International society for heart and lung transplantation: seventh official pediatric report-2004. J Heart Lung Transplant 23:933–947

    PubMed  Google Scholar 

  30. Ventura HO, Malik FS, Mehra MR, Stapleton DD, Smart FW (1997) Mechanisms of hypertension in cardiac transplantation and the role of cyclosporine. Curr Opin Cardiol 12:375–381

    CAS  PubMed  Google Scholar 

  31. Perloff JK, Latta H, Barsotti P (2000) Pathogenesis of the glomerular abnormality in cyanotic congenital heart disease. Am J Cardiol 86:1198–1204

    CAS  PubMed  Google Scholar 

  32. Awad H, el-Safty I, Abdel-Gawad M, el-Said S (2003) Glomerular and tubular dysfunction in children with congenital cyanotic heart disease: effect of palliative surgery. Am J Med Sci 325:110–114

    PubMed  Google Scholar 

  33. Ishani A, Erturk S, Hertz MI, Matas AJ, Savik K, Rosenberg ME (2002) Predictors of renal function following lung or heart-lung transplantation. Kidney Int 61:2228–2234

    PubMed  Google Scholar 

  34. Hornung TS, de Goede CG, O’Brien C, Moghal NE, Dark JH, O’Sullivan FP (2001) Renal function after pediatric cardiac transplantation: the effect of early cyclosporin dosage. Pediatrics 107:1346–1350

    CAS  PubMed  Google Scholar 

  35. Dello Strologo L, Parisi F, Legato A, Pontesilli C, Pastore A, Rava L, Tozzi AE, Rizzoni F (2006) Long-term renal function in heart transplant children on cyclosporine treatment. Pediatr Nephrol 21:561–565

    PubMed  Google Scholar 

  36. Camara NO, Matos AC, Rodrigues DA, Pereira AB, Pacheco-Silva A (2001) Early detection of heart transplant patients with increased risk of ciclosporin nephrotoxicity. Lancet 357:856–857

    CAS  PubMed  Google Scholar 

  37. Asante-Korang A, Boyle GJ, Webber SA, Miller SA, Fricker FJ (1996) Experience of FK506 immune suppression in pediatric heart transplantation: a study of long-term adverse effects. J Heart Lung Transplant 15:415–422

    CAS  PubMed  Google Scholar 

  38. Swenson JM, Fricker FJ, Armitage JM (1995) Immunosuppression switch in pediatric heart transplant recipients: cyclosporine to FK 506. J Am Coll Cardiol 25:1183–1188

    CAS  PubMed  Google Scholar 

  39. Bennett WM, Hosenpud J, Pantley G, Cobanoglu A, Starr A, Norman DJ (1989) Renal consequences of a low dose cyclosporine triple therapy regimen in cardiac transplantation. Transplant Proc 21:2479–2480

    CAS  PubMed  Google Scholar 

  40. Dipchand AI, Benson L, McCrindle BW, Coles J, West L (2001) Mycophenolate mofetil in pediatric heart transplant recipients: a single-center experience. Pediatr Transplant 5:112–118

    CAS  PubMed  Google Scholar 

  41. Kamar N, Allard J, Ader JL, Rostaing L (2004) Cyclosporine-A-based immunosuppression and renal functional reserve in organ-transplant patients. Transplant Proc 36:248S–250S

    CAS  PubMed  Google Scholar 

  42. Sindhi R (2003) Sirolimus in pediatric transplant recipients. Transplant Proc 35:113S–114S

    CAS  PubMed  Google Scholar 

  43. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, Starling RC, Sorensen K, Hummel M, Lind JM, Abeywickrama KH, Bernhardt P; RAD B253 Study Group (2003) Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 349:847–858

    CAS  PubMed  Google Scholar 

  44. Tedoriya T, Keogh AM, Kusano K, Savdie E, Hayward C, Spratt PM, Wilson M, Macdonald PS (2002) Reversal of chronic cyclosporine nephrotoxicity after heart transplantation-potential role of mycophenolate mofetil. J Heart Lung Transplant 21:976–982

    PubMed  Google Scholar 

  45. Baryalei M, Zenker D, Pieske B, Tondo K, Dalichau H, Aleksic I (2003) Renal function and safety of heart transplant recipients switched to mycophenolate mofetil and low-dose cyclosporine. Transplant Proc 35:1539–1542

    CAS  PubMed  Google Scholar 

  46. Sanchez V, Delgado JF, Morales JM, Tello R, Gomez MA, Escribano P, de la Camara AG, de la Calzada CS (2004) Chronic cyclosporine-induced nephrotoxicity in heart transplant patients: long-term benefits of treatment with mycophenolate mofetil and low-dose cyclosporine. Transplant Proc 36:2823–2825

    CAS  PubMed  Google Scholar 

  47. Aleksic I, Baryalei M, Busch T, Pieske B, Schorn B, Strauch J, Sirbu H, Dalichau H (2000) Improvement of impaired renal function in heart transplant recipients treated with mycophenolate mofetil and low-dose cyclosporine. Transplantation 69:1586–1590

    CAS  PubMed  Google Scholar 

  48. Angermann CE, Stork S, Costard-Jackle A, Dengler TJ, Siebert U, Tenderich G, Rahmel A, Schwarz ER, Nagele H, Wagner FM, Haaff B, Pethig K (2004) Reduction of cyclosporine after introduction of mycophenolate mofetil improves chronic renal dysfunction in heart transplant recipients: the IMPROVED multi-centre study. Eur Heart J 25:1626–1634

    CAS  PubMed  Google Scholar 

  49. Boyer O, Le Bidois J, Dechaux M, Gubler MC, Niaudet P (2005) Improvement of renal function in pediatric heart transplant recipients treated with low-dose calcineurin inhibitor and mycophenolate mofetil. Transplantation 79:1405–1410

    CAS  PubMed  Google Scholar 

  50. Reich DJ, Clavien PA, Hodge EE; MMF Renal Dysfunction after Liver Transplantation Working Group (2005) Mycophenolate mofetil for renal dysfunction in liver transplant recipients on cyclosporine or tacrolimus: randomized, prospective, multicenter pilot study results. Transplantation 80:18–25

    CAS  PubMed  Google Scholar 

  51. Beckebaum S, Cicinnati VR, Klein CG, Brokalaki E, Yu Z, Malago M, Frilling A, Gerken G, Broelsch CE (2004) Impact of combined mycophenolate mofetil and low-dose calcineurin inhibitor therapy on renal function, cardiovascular risk factors, and graft function in liver transplant patients: preliminary results of an open prospective study. Transplant Proc 36:2671–2674

    CAS  PubMed  Google Scholar 

  52. Ciancio G, Burke GW, Gaynor JJ, Mattiazzi A, Roth D, Kupin W, Nicolas M, Ruiz P, Rosen A, Miller J (2004) A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. Transplantation 77:252–258

    CAS  PubMed  Google Scholar 

  53. Filler G, Gellermann J, Zimmering M, Mai I (2000) Effect of adding Mycophenolate mofetil in paediatric renal transplant recipients with chronical cyclosporine nephrotoxicity. Transplant Int 13:201–206

    CAS  Google Scholar 

  54. De Sevaux RG, Gregoor PJ, Hene RJ, Hoitsma AJ, Vos P, Weimar W, Van Gelder T, Hilbrands LB (2001) A controlled trial comparing two doses of cyclosporine in conjunction with mycophenolate mofetil and corticosteroids. J Am Soc Nephrol 12:1750–1757

    PubMed  Google Scholar 

  55. Starling RC, Hare JM, Hauptman P, McCurry KR, Mayer HW, Kovarik JM, Schmidli H (2004) Therapeutic drug monitoring for everolimus in heart transplant recipients based on exposure-effect modeling. Am J Transplant 4:2126–2131

    CAS  PubMed  Google Scholar 

  56. Zucker MJ, Baran DA, Arroyo LH, Goldstein DJ, Neacy C, Mele L, Weinberg AD, Prendergast TW, Ribner HS (2005) De novo immunosuppression with sirolimus and tacrolimus in heart transplant recipients compared with cyclosporine and mycophenolate mofetil: a one-year follow-up analysis. Transplant Proc 37:2231–2239

    CAS  PubMed  Google Scholar 

  57. Mendez R, Gonwa T, Yang HC, Weinstein S, Jensik S, Steinberg S; Prograf Study Group (2005) A prospective, randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 1 year. Transplantation 80:303–309

    CAS  PubMed  Google Scholar 

  58. van Hooff JP, Squifflet JP, Wlodarczyk Z, Vanrenterghem Y, Paczek L (2003) A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. Transplantation 75:1934–1939

    PubMed  Google Scholar 

  59. Legendre C, Campistol JM, Squifflet JP, Burke JT; Sirolimus European Renal Transplant Study Group (2003) Cardiovascular risk factors of sirolimus compared with cyclosporine: early experience from two randomized trials in renal transplantation. Transplant Proc 35:151S–153S

    CAS  PubMed  Google Scholar 

  60. Gonwa T, Mendez R, Yang HC, Weinstein S, Jensik S, Steinberg S; Prograf Study Group (2003) Randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 6 months. Transplantation 75:1213–1220

    CAS  PubMed  Google Scholar 

  61. Saunders RN, Bicknell GR, Nicholson ML (2003) The impact of cyclosporine dose reduction with or without the addition of rapamycin on functional, molecular, and histological markers of chronic allograft nephropathy. Transplantation 75:772–780

    CAS  PubMed  Google Scholar 

  62. Hoyer PF, Ettenger R, Kovarik JM, Webb NJ, Lemire J, Mentser M, Mahan J, Loirat C, Niaudet P, VanDamme-Lombaerts R, Offner G, Wehr S, Moeller V, Mayer H; Everolimus Pediatric Study Group (2003) Everolimus in pediatric de nova renal transplant patients. Transplantation 75:2082–2085

    PubMed  Google Scholar 

  63. Groetzner J, Meiser B, Landwehr P, Buehse L, Mueller M, Kaczmarek I, Vogeser M, Daebritz S, Ueberfuhr P, Reichart B (2004) Mycophenolate mofetil and sirolimus as calcineurin inhibitor-free immunosuppression for late cardiac-transplant recipients with chronic renal failure. Transplantation 77:568–574

    CAS  PubMed  Google Scholar 

  64. Schlitt HJ, Barkmann A, Boker KH, Schmidt HH, Emmanouilidis N, Rosenau J, Bahr MJ, Tusch G, Manns MP, Nashan B, Klempnauer J (2001) Replacement of calcineurin inhibitors with mycophenolate mofetil in liver-transplant patients with renal dysfunction: a randomised controlled study. Lancet 357:587–591

    CAS  PubMed  Google Scholar 

  65. Dudley C, Pohanka E, Riad H, Dedochova J, Wijngaard P, Sutter C, Silva HT Jr; Mycophenolate Mofetil Creeping Creatinine Study Group (2005) Mycophenolate mofetil substitution for cyclosporine a in renal transplant recipients with chronic progressive allograft dysfunction: the “creeping creatinine” study. Transplantation 79:466–475

    CAS  PubMed  Google Scholar 

  66. Suwelack B, Gerhardt U, Hohage H (2004) Withdrawal of cyclosporine or tacrolimus after addition of mycophenolate mofetil in patients with chronic allograft nephropathy. Am J Transplant 4:655–662

    CAS  PubMed  Google Scholar 

  67. Abramowicz D, Del Carmen Rial M, Vitko S, del Castillo D, Manas D, Lao M, Gafner N, Wijngaard P; Cyclosporine Withdrawal Study Group (2005) Cyclosporine withdrawal from a mycophenolate mofetil-containing immunosuppressive regimen: results of a five-year, prospective, randomized study. J Am Soc Nephrol 16:2234–2240

    CAS  PubMed  Google Scholar 

  68. Smak Gregoor PJ, de Sevaux RG, Ligtenberg G, Hoitsma AJ, Hene RJ, Weimar W, Hilbrands LB, van Gelder T (2002) Withdrawal of cyclosporine or prednisone six months after kidney transplantation in patients on triple drug therapy: a randomized, prospective, multicenter study. J Am Soc Nephrol 13:1365–1373

    PubMed  Google Scholar 

  69. Oberbauer R, Segoloni G, Campistol JM, Kreis H, Mota A, Lawen J, Russ G, Grinyo JM, Stallone G, Hartmann A, Pinto JR, Chapman J, Burke JT, Brault Y, Neylan JF; Rapamune Maintenance Regimen Study Group (2005) Early cyclosporine withdrawal from a sirolimus-based regimen results in better renal allograft survival and renal function at 48 months after transplantation. Transplant Int 18:22–28

    CAS  Google Scholar 

  70. Gonwa TA, Hricik DE, Brinker K, Grinyo JM, Schena FP; Sirolimus Renal Function Study Group (2002) Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation 74:1560–1567

    CAS  PubMed  Google Scholar 

  71. Ruiz JC, Campistol JM, Mota A, Prats D, Gutierrez JA, Castro A, Garcia J, Morales JM, Grynio JM, Gomez JM, Arias M (2003) Early elimination of cyclosporine in kidney transplant recipients receiving sirolimus prevents progression of chronic pathologic allograft lesions. Transplant Proc 35:1669–1670

    CAS  PubMed  Google Scholar 

  72. Grinyo JM, Campistol JM, Paul J, Garcia-Martinez J, Morales JM, Prats D, Arias M, Brunet M, Cabrera J, Granados E (2004) Pilot randomized study of early tacrolimus withdrawal from a regimen with sirolimus plus tacrolimus in kidney transplantation. Am J Transplant 4:1308–1314

    CAS  PubMed  Google Scholar 

  73. Mota A, Arias M, Taskinen EI, Paavonen T, Brault Y, Legendre C, Claesson K, Castagneto M, Campistol JM, Hutchison B, Burke JT, Yilmaz S, Hayry P, Neylan JF; Rapamune Maintenance Regimen Trial (2004) Sirolimus-based therapy following early cyclosporine withdrawal provides significantly improved renal histology and function at 3 years. Am J Transplant 4:953–961

    CAS  PubMed  Google Scholar 

  74. Kreis H, Oberbauer R, Campistol JM, Mathew T, Daloze P, Schena FP, Burke JT, Brault Y, Gioud-Paquet M, Scarola JA, Neylan JF; Rapamune Maintenance Regimen Trial (2004) Long-term benefits with sirolimus-based therapy after early cyclosporine withdrawal. J Am Soc Nephrol 15:809–817

    CAS  PubMed  Google Scholar 

  75. Grinyo JM, Gil-Vernet S, Cruzado JM, Caldes A, Riera L, Seron D, Rama I, Torras J (2003) Calcineurin inhibitor-free immunosuppression based on antithymocyte globulin and mycophenolate mofetil in cadaveric kidney transplantation: results after 5 years. Transplant Int 16:820–827

    CAS  Google Scholar 

  76. Vincenti F, Ramos E, Brattstrom C, Cho S, Ekberg H, Grinyo J, Johnson R, Kuypers D, Stuart F, Khanna A, Navarro M, Nashan B (2001) Multicenter trial exploring calcineurin inhibitors avoidance in renal transplantation. Transplantation 71:1282–1287

    CAS  PubMed  Google Scholar 

  77. Meiser B, Reichart B, Adamidis I, Uberfuhr P, Kaczmarek I (2005) First experience with de novo calcineurin-inhibitor-free immunosuppression following cardiac transplantation. Am J Transplant 5:827–831

    PubMed  Google Scholar 

  78. Hamdy AF, El-Agroudy AE, Bakr MA, Mostafa A, El-Baz M, El-Shahawy el-M, Ghoneim MA (2005) Comparison of sirolimus with low-dose tacrolimus versus sirolimus-based calcineurin inhibitor-free regimen in live donor renal transplantation. Am J Transplant 5:2531–2538

    CAS  PubMed  Google Scholar 

  79. Flechner SM, Kurian SM, Solez K, Cook DJ, Burke JT, Rollin H, Hammond JA, Whisenant T, Lanigan CM, Head SR, Salomon DR (2004) De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am J Transplant 4:1776–1785

    CAS  PubMed  Google Scholar 

  80. Deeb GM, Kolff J, McClurken JB, Dunn J, Balsara R, Ochs R, Badellino M, Hollander T, Eldridge C, Clancey M (1987) Antithymocyte gamma globulin, low-dosage cyclosporine, and tapering steroids as an immunosuppressive regimen to avoid early kidney failure in heart transplantation. J Heart Transplant 6:79–83

    CAS  PubMed  Google Scholar 

  81. Heffron TG, Pillen T, Smallwood GA, Welch D, Oakley B, Romero R (2003) Pediatric liver transplantation with daclizumab induction. Transplantation 75:2040–2043

    CAS  PubMed  Google Scholar 

  82. Belitsky P, Dunn S, Johnston A, Levy G (2000) Impact of absorption profiling on efficacy and safety of cyclosporine therapy in transplant recipients. Clin Pharmacokinet 39:117–125

    CAS  PubMed  Google Scholar 

  83. Cantarovich M, Besner JG, Barkun JS, Elstein E, Loertscher R (1998) Two-hour cyclosporine level determination is the appropriate tool to monitor Neoral therapy. Clin Transplant 12:243–249

    CAS  PubMed  Google Scholar 

  84. Schuetz M, Einecke G, Mai I, Neumayer HH, Glander P, Waiser J, Fritsche L, Budde K (2005) Problems of cyclosporine absorption profiling using C2-monitoring. Eur J Med Res 10:175–178

    CAS  PubMed  Google Scholar 

  85. Caforio AL, Tona F, Piaserico S, Gambino A, Feltrin G, Fortina AB, Angelini A, Alaibac M, Bontorin M, Calzolari D, Peserico A, Thiene G, Iliceto S, Gerosa G (2005) C2 is superior to C0 as predictor of renal toxicity and rejection risk profile in stable heart transplant recipients. Transplant Int 18:116–124

    Google Scholar 

  86. Trompeter R, Fitzpatrick M, Hutchinson C, Johnston AN (2003) Longitudinal evaluation of the pharmacokinetics of cyclosporin microemulsion (Neoral) in pediatric renal transplant recipients and assessment of C2 level as a marker for absorption. Pediatr Transplant 7:282–288

    CAS  PubMed  Google Scholar 

  87. Cantarovich M, Barkun JS, Tchervenkov JI, Besner JG, Aspeslet L, Metrakos P (1998) Comparison of neoral dose monitoring with cyclosporine through levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation 66:1621–1627

    CAS  PubMed  Google Scholar 

  88. Baraldo M, Pea F, Poz D, Albanese M.C, Livi U, Furlanut M (2001) Cyclosporine dose fractioning might affect renal function in stable heart transplanted patients. Transplant Proc 33:3151–3153

    CAS  PubMed  Google Scholar 

  89. Sun BK, Li C, Lim SW, Choi BS, Lee SH, Kim IS, Kim YS, Bang BK, Yang CW (2005) Blockade of angiotensin II with losartan attenuates transforming growth factor-beta 1 inducible Gene-h3 (betaig-h3) expression in a model of chronic cyclosporine nephrotoxicity. Nephron Exp Nephrol 99:e9–e16

    CAS  PubMed  Google Scholar 

  90. Khanna AK, Cairns VR, Becker CG, Hosenpud JD (1999) Transforming growth factor (TGF)-beta 1 mimics and anti-TGF-β1 antibody abrogates the in vivo effects of cyclosporine: demonstration of a direct role of TGF-beta in immunosuppression and nephrotoxicity of cyclosporine. Transplantation 67:882–889

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Di Filippo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Filippo, S., Cochat, P. & Bozio, A. The challenge of renal function in heart transplant children. Pediatr Nephrol 22, 333–342 (2007). https://doi.org/10.1007/s00467-006-0229-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0229-9

Keywords

Navigation