Skip to main content
Log in

Serum cystatin C and left ventricular diastolic dysfunction in children with chronic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Previous studies indicate that serum cystatin C predicts incident heart failure in older adults. Children with chronic kidney disease (CKD) develop left ventricular (LV) diastolic dysfunction, often the initial abnormality of cardiac function. We hypothesized that cystatin C might predict LV diastolic dysfunction in children with CKD. Fifty-seven subjects, aged 6–21 years, with stage 2–4 CKD underwent echocardiography. Diastole was assessed from transmitral Doppler [maximum early (E wave) and late (A wave) diastolic flow velocities (E/A ratio)] and from tissue Doppler [septal mitral annular peak velocities (E′)]. LV filling pressures were determined, using a ratio of E/E′. Fourteen (25%) patients had low E′ and 15 (26%) had high E/E′. Children with abnormal E′ or E/E′ had significantly higher cystatin C levels than children with normal indices (P<0.05). Neither serum creatinine nor measured glomerular filtration rate (GFR) significantly correlated with E’ or E/E’. Stepwise multiple regression analysis showed that cystatin C (β=−0.825, P=0.023) and left ventricular mass (LVM) index (β=0.099, P=0.006) independently predicted E′; LVM index independently predicted E/E′ (β=0.0173, P=0.01). We conclude that, in contrast to measured GFR or serum creatinine level, elevated serum cystatin C might be associated with diastolic dysfunction in children with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parekh RS, Carroll CE, Wolfe RA, Port FK (2002) Cardiovascular death in children and young adults with end-stage kidney disease. J Pediatr 141:191–197

    Article  PubMed  CAS  Google Scholar 

  2. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ, Wolff ED, Davin JC, Heymans HS (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629

    Article  PubMed  Google Scholar 

  3. Gottdiener JS, Arnold AM, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, Gardin JM, Rutledge JE, Boineau RC (2000) Predictors of congestive heart failure in the elderly: the Cardiovascular Health Study. J Am Coll Cardiol 35:1628–1637

    Article  PubMed  CAS  Google Scholar 

  4. Fried LF, Shlipak MG, Crump C, Bleyer AJ, Gottdiener JS, Kronmal RA, Kuller LH, Newman AB (2003) Renal insufficiency as a predictor of cardiovascular outcomes and mortality in elderly individuals. J Am Coll Cardiol 41:1364–1372

    Article  PubMed  Google Scholar 

  5. Bibbins-Domingo K, Lin F, Vittinghoff E, Barrett-Connor E, Hulley SB, Grady D, Shlipak MG (2004) Predictors of heart failure among women with coronary disease. Circulation 110:1424–1430

    Article  PubMed  Google Scholar 

  6. Chae CU, Albert CM, Glynn RJ, Guralnik JM, Curhan GC (2003) Mild renal insufficiency and risk of congestive heart failure in men and women >or =70 years of age. Am J Cardiol 92:682–686

    Article  PubMed  Google Scholar 

  7. Sarnak MJ, Katz R, Stehman-Breen CO, Fried LF, Jenny NS, Psaty BM, Newman AB, Siscovick D, Shlipak MG (2005) Cardiovascular Health Study. Cystatin C concentration as a risk factor for heart failure in older adults. Ann Intern Med 142:497–505

    PubMed  CAS  Google Scholar 

  8. Arimoto T, Takeishi Y, Niizeki T, Takabatake N, Okuyama H, Fukui A, Tachibana H, Nozaki N, Hirono O, Tsunoda Y, Miyashita T, Shishido T, Takahashi H, Koyama Y, Kubota I (2005) Cystatin C, a novel measure of renal function, is an independent predictor of cardiac events in patients with heart failure. J Card Fail 11:595–601

    Article  PubMed  CAS  Google Scholar 

  9. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  PubMed  CAS  Google Scholar 

  10. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR—history, indications, and future research. Clin Biochem 38:1–8

    Article  PubMed  CAS  Google Scholar 

  11. Foster J, Reisman W, Lepage N, Filler G (2006) Influence of commonly used drugs on the accuracy of cystatin C-derived glomerular filtration rate. Pediatr Nephrol 21:235–238

    Article  PubMed  Google Scholar 

  12. Krawczuk-Rybak M, Kuzmicz M, Wysocka J (2005) Renal function during and after treatment for acute lymphoblastic leukemia in children. Pediatr Nephrol 20:782–785

    Article  PubMed  Google Scholar 

  13. Pavicevic S, Peco-Antic A (2005) Cystatin C: our experience. Pediatr Nephrol 20:842–843

    Article  PubMed  Google Scholar 

  14. Bardi E, Bobok I, Olah AV, Olah E, Kappelmayer J, Kiss C (2004) Cystatin C is a suitable marker of glomerular function in children with cancer. Pediatr Nephrol 19:1145–1147

    Article  PubMed  Google Scholar 

  15. Goren A, Glaser J, Drukker A (1993) Diastolic function in children and adolescents on dialysis and after kidney transplantation: an echocardiographic assessment. Pediatr Nephrol 7:725–728

    Article  PubMed  CAS  Google Scholar 

  16. Johnstone LM, Jones CL, Grigg LE, Wilkinson JL, Walker RG, Powell HR (1996) Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int 50:998–1006

    Article  PubMed  CAS  Google Scholar 

  17. Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2004) Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int 65:1461–1466

    Article  PubMed  Google Scholar 

  18. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576

    Article  Google Scholar 

  19. National Kidney Foundation KDOQI guidelines (2003) Clinical practice guidelines for managing dyslipidemias in chronic kidney disease. Am J Kidney Dis 41 [Suppl 3]:S22–S38

    Google Scholar 

  20. Stake G, Monclair T (1991) A single plasma sample method for estimation of the glomerular filtration rate in infants and children using iohexol: establishment of a body weight-related formula for the distribution volume of iohexol. Scand J Clin Lab Invest 51:335–342

    Article  PubMed  CAS  Google Scholar 

  21. Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122

    Article  PubMed  CAS  Google Scholar 

  22. Devereux RB, Reichec N (1977) Echocardiographic determination of left ventricular mass in man: anatomic validation of the method. Circulation 55:613–618

    PubMed  CAS  Google Scholar 

  23. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251–1260

    Article  PubMed  Google Scholar 

  24. de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH (1995) Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062

    Article  PubMed  Google Scholar 

  25. Rakowski H, Appleton C, Chan KL, Dumesnil JG, Honos G, Jue J, Koilpillai C, Lepage S, Martin RP, Mercier LA, O’Kelly B, Prieur T, Sanfilippo A, Sasson Z, Alvarez N, Pruitt R, Thompson C, Tomlinson C (1996) Canadian consensus recommendations for the measurement and reporting of diastolic dysfunction by echocardiography: from the Investigators of Consensus on Diastolic Dysfunction by Echocardiography. J Am Soc Echocardiogr 9:736–760

    Article  PubMed  CAS  Google Scholar 

  26. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  PubMed  CAS  Google Scholar 

  27. Garcia MJ, Ares MA, Asher C, Rodriguez L, Vandervoort P, Thomas JD (1997) An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J Am Coll Cardiol 29:448–454

    Article  PubMed  CAS  Google Scholar 

  28. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 10:1788–1794

    Google Scholar 

  29. Kapusta L, Thijssen JM, Cuypers MH, Peer PG, Daniels O (2000) Assessment of myocardial velocities in healthy children using tissue Doppler imaging. Ultrasound Med Biol 26:229–237

    Article  PubMed  CAS  Google Scholar 

  30. Swaminathan S, Ferrer PL, Wolff GS, Gomez-Marin O, Rusconi PG (2003) Usefulness of tissue Doppler echocardiography for evaluating ventricular function in children without heart disease. Am J Cardiol 91:570–574

    Article  PubMed  Google Scholar 

  31. Nagueh SF, Mikati I, Kopelen HA, Middleton KJ, Quinones MA, Zoghbi WA (1998) Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue Doppler imaging. Circulation 98:1644–1650

    PubMed  CAS  Google Scholar 

  32. Sohn DW, Chai IH, Lee DJ, Kim HC, Kim HS, Oh BH, Lee MM, Park YB, Choi YS, Seo JD, Lee YW (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 30:474–480

    Article  PubMed  CAS  Google Scholar 

  33. Farias CA, Rodriguez L, Garcia MJ, Sun JP, Klein AL, Thomas JD (1999) Assessment of diastolic function by tissue Doppler echocardiography: comparison with standard transmitral and pulmonary venous flow. J Am Soc Echocardiogr 12:609–617

    Article  PubMed  CAS  Google Scholar 

  34. Levin A (2005) Cystatin C, serum creatinine, and estimates of kidney function: searching for better measures of kidney function and cardiovascular risk. Ann Intern Med 142:586–588

    PubMed  Google Scholar 

  35. Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP (2004) Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 24:1359–1366

    Article  PubMed  CAS  Google Scholar 

  36. Koenig W, Twardella D, Brenner H, Rothenbacher D (2005) Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: more than simply a marker of glomerular filtration rate. Clin Chem 51:321–327

    Article  PubMed  CAS  Google Scholar 

  37. Mares J, Stejskal D, Vavrouskova J, Urbanek K, Herzig R, Hlustak P (2003) Use of cystatin C determination in clinical diagnostics. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147:177–180

    PubMed  CAS  Google Scholar 

  38. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421

    Article  PubMed  CAS  Google Scholar 

  39. Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivela SL, Irjala K (2003) Serum cystatin C in the aged: relationships with health status. Am J Kidney Dis 42:36–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M.M. is supported by grants 2K12HD28827 and K23 HL69296-01 from the National Institutes of Health; P.D. is supported by grants from the NIH/NIDDK (RO1-DK069749, P50-DK52612, R21-DK070163), a Grant-in-Aid from the American Heart Association Ohio Valley Affiliate, and a Translational Research Initiative Grant from Cincinnati Children's Hospital Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mitsnefes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsnefes, M., Kimbal, T., Kartal, J. et al. Serum cystatin C and left ventricular diastolic dysfunction in children with chronic kidney disease. Pediatr Nephrol 21, 1293–1298 (2006). https://doi.org/10.1007/s00467-006-0132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0132-4

Keywords

Navigation