Skip to main content
Log in

Serum cystatin C levels in children with sickle cell disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2006

This article has been updated

Abstract

Patients with sickle cell disease (SCD) may develop kidney dysfunction from childhood. The purpose of this study was to examine the value of serum cystatin C as a marker for glomerular filtration rate (GFR) in children with SCD, as compared to serum creatinine and creatinine clearance (CrCl). Twenty children (ages 9–21, ten males) with SCD with and without albuminuria were studied. The mean serum cystatin for the whole group was 0.89 mg/l (0.5–1.7 mg/l). Mean serum cystatin C was significantly different among the children with proteinuria (n=4), microalbuminuria (n=5), and without albuminuria (n=11) (1.25 mg/l, 0.84 mg/l, and 0.78 mg/l, respectively). The mean GFR derived from serum cystatin was significantly different among these subgroups, becoming abnormal in the proteinuric cohort (63 ml/min per 1.73 m2), in contrast to 94 for the microalbuminuric, and 103 for the normal subgroups. Serum creatinine (mean: 0.58 mg/dl, range: 0.3–1.1) did not change significantly with the level of albuminuria. Mean CrCl remained normal to increased within the subgroups, (133 ml/min per 1.73 m2 for those with proteinuria, 144 for those with microalbuminuria, and 163 for the normal subgroup). We conclude that serum cystatin C correlates with the level of albuminuria and may be a reliable method to measure renal function in SCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 01 August 2006

    In the introduction, the expanded form of CSSCD should read Cooperative Study of Sickle Cell Disease (CSSCD) and not Comprehensive Study of Sickle Cell Disease.

References

  1. Pham PT, Pham C, Wilkinson AH, Lew SQ (2000) Renal abnormalities in sickle cell disease. Kidney Int 57:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Osarogiagbon UR, Choong S, Belcher JD, Vercelotti GM, Paller MS, Hebbel RP (2000) Reperfusion injury pathophysiology in sickle transgenic mice. Blood 96:314–320

    PubMed  CAS  Google Scholar 

  3. Ataga KI, Orringer EP (2000) Renal abnormalities in sickle cell disease. Am J Hematol 63:205–211

    Article  PubMed  CAS  Google Scholar 

  4. Sklar AH, Campbell H, Caruana RJ, Lightfoot BO, Gaier JG, Milner P (1990) A population study of renal function in sickle cell anemia. Int J Artif Organs 13:231–236

    PubMed  CAS  Google Scholar 

  5. Falk RJ, Scheinman J, Phillips G, Orringer E, Johnson A, Jennette JC (1992) Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N Engl J Med 326:910–915

    Article  PubMed  CAS  Google Scholar 

  6. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease. Life expectancy and risk factors in early death. N Engl J Med 330:1639–1644

    Article  PubMed  CAS  Google Scholar 

  7. Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339:1448–1456

    Article  PubMed  CAS  Google Scholar 

  8. Guasch A, Cua M, Mitch WE (1996) Early detection and course of glomerular injury in patients with sickle cell anemia. Kidney Int 49:786–791

    Article  PubMed  CAS  Google Scholar 

  9. Weber JA, Van Zanten AP (1991) Interferences in current methods for measurements of creatinine. Clin Chem 37:695–700

    PubMed  CAS  Google Scholar 

  10. Swaminathan R, Major P, Snieder H, Spector T (2000) Serum creatinine and fat-free mass (lean body mass). Clin Chem 46:1695–1696

    PubMed  CAS  Google Scholar 

  11. Filler G, Bokenkamp A, Hoffman W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR-history, indications, and future research. Clin Biochem 38:1–8

    Article  PubMed  CAS  Google Scholar 

  12. Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J (1998) Cystatin C—a new marker of glomerular filtration rate in children independent of height and age. Pediatrics 101:875–881

    Article  PubMed  CAS  Google Scholar 

  13. Newman D, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, Price CP (1995) Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 47:312–318

    Article  PubMed  CAS  Google Scholar 

  14. Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabeled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414

    Article  PubMed  CAS  Google Scholar 

  15. Newman D (2002) Cystatin C. Ann Clin Biochem 39(pt 2):89–104

    Article  PubMed  CAS  Google Scholar 

  16. Finney H, Newman DJ, Thakkar H, Fell JME, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75

    Article  PubMed  CAS  Google Scholar 

  17. Finney H, Newman DJ, Gruber W, Merle P, Price CP (1997) Initial evaluation of cystatin C measurement by particle-enhanced immunonephelometry on the Behring nephelometer systems (BNA, BN II). Clin Chem 43:1016–1022

    PubMed  CAS  Google Scholar 

  18. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    PubMed  CAS  Google Scholar 

  19. Cockcroft D, Gault M (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  20. Hoek FJ, Kemperman FAW, Krediet RT (2003) A comparison between cystatin C, plasma creatinine, and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 18:2024–2031

    Article  PubMed  CAS  Google Scholar 

  21. Filler G, Foster J, Acker A, Lepage N, Akbari A, Ehrich JHH (2005) The Cockcroft-Gault formula should not be used in children. Kidney Int 67:2321–2324

    Article  PubMed  Google Scholar 

  22. Simonsen O, Grubb A, Thysell H (1985) The blood serum concentration of cystatin C (gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 45:97–101

    Article  PubMed  CAS  Google Scholar 

  23. Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindstrom V, Grubb A (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidometric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40:1921–1926

    PubMed  CAS  Google Scholar 

  24. Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C (2003) Impact of thyroid dysfunction on serum cystatin C. Kidney Int 63:1944–1947

    Article  PubMed  CAS  Google Scholar 

  25. Bokenkamp A, van Wijk JAE, Lentze MJ, Stoffel-Wagner B (2002) Effect of corticosteroid therapy on serum cystatin C and β2-microglobulin concentrations. Clin Chem 48:1123–1126

    PubMed  CAS  Google Scholar 

  26. Risch I, Herklotz R, Blumberg A, Hueber AR (2001) Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem 47:2055–2059

    PubMed  CAS  Google Scholar 

  27. Christensson AG, Grubb AO, Nilsson JA, Norrgren K, Sterner G, Sundkvist G (2004) Serum cystatin C advantageous compared with serum creatinine in the detection of mild but not severe diabetic nephropathy. J Intern Med 256:510–518

    Article  PubMed  CAS  Google Scholar 

  28. Mussap M, Dalla Vestra M, Fioretto P, Saller A, Varagnolo M, Nosadini R, Plebani M (2002) Cystatin C is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int 61:1453–1461

    Article  PubMed  CAS  Google Scholar 

  29. Tomino Y, Suzuki S, Gohda T, Kobayashi M, Horikoshi S, Imai H, Saito T, Kawamura T, Yorioka N, Harada T, Yasumoto Y, Kida H, Kobayashi Y, Endoh M, Sato H, Saito K (2001) Serum cystatin C may predict the prognostic stages of patients with IgA nephropathy prior to renal biopsy. J Clin Lab Anal 15:25–29

    Article  PubMed  CAS  Google Scholar 

  30. Schuck O, Gottfriedova H, Maly J, Jabor A, Stollova M, Bruzkova I, Skibova J, Ryska M, Spicak J, Trunecka P, Novakova J (2002) Glomerular filtration rate assessments in individuals after orthotopic liver transplantation based on serum cystatin C levels. Liver Transplant 8:594–599

    Article  Google Scholar 

  31. LeBricon T, Thervet E, Benlakehal M, Bouequet B, Legendre C, Erlich D (1999) Changes in plasma cystatin C after renal transplantation and acute rejection in adults. Clin Chem 45:2243–2249

    PubMed  CAS  Google Scholar 

  32. Orlando R, Mussap M, Plebani M, Piccoli P, DeMartin S, Floreani M, Padrini R, Palatini P (2002) Diagnostic value of plasma cystatin C as a glomerular filtration marker in decompensated liver cirrhosis. Clin Chem 48:850–858

    PubMed  CAS  Google Scholar 

  33. Dharnirharka VR, Kwon G, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  PubMed  CAS  Google Scholar 

  34. Alvarez O, Montane B, Lopez G, Wilkinson J, Miller T (2005) Early blood transfusions protect against microalbuminuria in children with sickle cell disease. Pediatr Blood Cancer DOI: 10.1002/pbc.20645

  35. Wigfall DR, Ware RE, Burchinal MR, Kinney TR, Foreman JW (2000) Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J Pediatr 136:749–753

    Article  PubMed  CAS  Google Scholar 

  36. Zayas CF, Platt J, Eckman JR, Elsas L, Clark WS, Mitch WE, Guasch A (1996) Prevalence and predictors of glomerular involvement in sickle cell anemia (abstract). J Am Soc Nephrol 7:1401

    Google Scholar 

  37. Aoki RY, Saad ST (1990) Microalbuminuria in sickle cell disease. Braz J Med Biol Res 23:1103–1106

    PubMed  CAS  Google Scholar 

  38. Powars DR, Elliott-Mills DD, Chan L, Niland J, Hiti AL, Opas LM, Johnson C (1991) Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med 115:614–620

    PubMed  CAS  Google Scholar 

  39. Schmitt F, Martinez F, Brillet G, Giatras I, Choukroun G, Girot R, Bachir D, Galacteros F, Lacour B, Grunfeld JP (1998) Early glomerular dysfunction in patients with sickle cell anemia. Am J Kidney Dis 32:208–221

    PubMed  CAS  Google Scholar 

  40. Herrera J, Avila E, Marin C, Rodriguez-Iturbe B (2002) Impaired creatinine secretion after an intravenous creatinine load is an early characteristic of the nephropathy of sickle cell anaemia. Nephrol Dial Transplant 17:602–607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank ARUP Laboratories for the cystatin C analysis and Dr. Astrid Mack and the Sickle Cell Disease Association of America, Miami-Dade County Chapter, for providing economic support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofelia Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, O., Zilleruelo, G., Wright, D. et al. Serum cystatin C levels in children with sickle cell disease. Pediatr Nephrol 21, 533–537 (2006). https://doi.org/10.1007/s00467-006-0033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0033-6

Keywords

Navigation