Skip to main content

Advertisement

Log in

Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS) plays a fundamental role in kidney development. All of the components of the RAS are expressed in the metanephros. Mutations in the genes encoding components of the RAS in mice or pharmacological inhibition of RAS in animals or humans cause diverse congenital abnormalities of the kidney and lower urinary tract. The latter include renal vascular abnormalities, abnormal glomerulogenesis, renal papillary hypoplasia, hydronephrosis, aberrant UB budding, duplicated collecting system, and urinary concentrating defect. Thus, the actions of angiotensin (ANG) II during kidney development are pleiotropic both spatially and temporally. Whereas the role of ANG II in renovascular and glomerular development has received much attention, little is known about the potential role of ANG II and its receptors in the morphogenesis of the collecting system. In this review, we discuss recent genetic and functional evidence gathered from transgenic knockout mice and in vitro organ and cell culture implicating the RAS in the development of the ureteric bud and collecting ducts. A novel conceptual framework has emerged from this body of work which states that stroma-derived ANG II elicits activation of AT1/AT2 receptors expressed on the ureteric bud to stimulate branching morphogenesis as well as collecting duct elongation and papillogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3A–E
Fig. 4A–E
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

  2. Al-Awqati Q, Goldberg MR (1998) Architectural patterns in branching morphogenesis in the kidney. Kidney Int 54:832–1842

    Article  Google Scholar 

  3. Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150

    CAS  PubMed  Google Scholar 

  4. Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse metanephros. Science 118:52–55

    CAS  PubMed  Google Scholar 

  5. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    CAS  PubMed  Google Scholar 

  6. Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90:33–39

    Article  CAS  PubMed  Google Scholar 

  7. Sainio K, Nonclercq D, Saarma M, Palgi J, Saxen L, Sariola H (1994) Neuronal characteristics in embryonic renal stroma. Int J Dev Biol 38:77–84

    CAS  PubMed  Google Scholar 

  8. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126:1139–1148

    CAS  PubMed  Google Scholar 

  9. Hatini A, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478

    CAS  PubMed  Google Scholar 

  10. Koseki C, Herzlinger D, Al-Awqati Q (1992) Apoptosis in metanephric development. J Cell Biol 119:1327–1333

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Blum A, Novak T, Levinson R, Lai E, Barasch J (2002) An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Dev Biol 246:296–310

    Article  CAS  PubMed  Google Scholar 

  12. Arima S, Kohagura K, Abe M, Ito S (2001) Mechanisms that control glomerular hemodynamics. Clin Exp Nephrol 5:55–61

    Article  Google Scholar 

  13. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol 281:H2337-H2365

    CAS  Google Scholar 

  14. Wolf G, Haberstroh U, Neilson EG (1992) Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol 140:95–107

    CAS  PubMed  Google Scholar 

  15. Goto M, Mukoyama M, Suga, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362

    CAS  PubMed  Google Scholar 

  16. Gross V, Schunck WH, Honeck H, Milia AF, Kargel E, Walther T, Bader M, Inagami T, Schneider W, Luft FC (2000) Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int 57:191–202

    Article  CAS  PubMed  Google Scholar 

  17. Siragy HM, Carey RM (1997) The subtype-2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269

    CAS  PubMed  Google Scholar 

  18. Liang P, Jones CA, Bisgrove BW, Song L, Glenn ST, Yost HJ, Gross KW (2004) Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish. Physiol Genomics 16:314–322

    Article  CAS  PubMed  Google Scholar 

  19. Wintour EM, Alcorn D, Butkus A, Congiu M, Earnest L, Pompolo S, Potocnik SJ (1996) Ontogeny of hormonal and excretory function of the meso and metanephros in the ovine fetus. Kidney Int 50:1624–1633

    CAS  PubMed  Google Scholar 

  20. Celio MR, Groscurth P, Inagami T (1985) Ontogeny of renin immunoreactive cells in the human kidney. Anat Embryol (Berl) 173:49–55

    Google Scholar 

  21. Egerer G, Taugner R, Tiedemann K (1984) Renin immunohistochemistry in the mesonephros and metanephros of the pig embryo. Histochemistry 81:385–390

    Article  CAS  PubMed  Google Scholar 

  22. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795

    CAS  PubMed  Google Scholar 

  23. Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465

    Article  CAS  PubMed  Google Scholar 

  24. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065

    CAS  PubMed  Google Scholar 

  25. Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257: F850-F858

    CAS  PubMed  Google Scholar 

  26. Norwood VF, Craig MR, Harris JM, Gomez RA (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662-R668

    CAS  PubMed  Google Scholar 

  27. Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23:369–374

    CAS  PubMed  Google Scholar 

  28. Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286

    CAS  PubMed  Google Scholar 

  29. Jung FF, Bouyounes B, Barrio R, Tang SS, Diamant D, Ingelfinger JR (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840

    Article  CAS  PubMed  Google Scholar 

  30. Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37

    CAS  PubMed  Google Scholar 

  31. Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199-F207

    CAS  Google Scholar 

  32. Iosipiv IV (2002) Cellular expression of the angiotensin type 2 receptor (AT2) during murine organogenesis. J Invest Medicine 50:134A

    Google Scholar 

  33. Yosypiv IV, Schroeder M (2004) Role of angiotensin type 2 (AT2) receptor in ureteric bud cell branching morphogenesis in vitro. J Am Soc Nephrol 15:419A

    Google Scholar 

  34. Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147

    CAS  PubMed  Google Scholar 

  35. Garcia-Villalba P, Denkers ND, Wittwer CT, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron. Exp Nephrol 94:e154–159

    Article  CAS  Google Scholar 

  36. Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345-F356

    CAS  Google Scholar 

  37. Yoo KH, Wolstenholme JT, Chevalier RL (1997) Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 42:588–592

    CAS  PubMed  Google Scholar 

  38. Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 38:F110-F115

    Google Scholar 

  39. Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45:485–492

    CAS  PubMed  Google Scholar 

  40. Schaefer C (2003) Angiotensin II-receptor-antagonists: further evidence of fetotoxicity but not teratogenicity. Birth Defects Res A Clin Mol Teratol 67:591–594

    Article  CAS  PubMed  Google Scholar 

  41. Tabacova S, Little R, Tsong Y, Vega A, Kimmel CA (2003) Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol Drug Saf 12:633–646

    Article  CAS  PubMed  Google Scholar 

  42. Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753

    CAS  PubMed  Google Scholar 

  43. Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954

    CAS  PubMed  Google Scholar 

  44. Takahashi N, Lopez ML, Cowhig JE Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16125–132

  45. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 7:953–965

    Google Scholar 

  46. Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501

    Article  CAS  PubMed  Google Scholar 

  47. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760

    CAS  PubMed  Google Scholar 

  48. Okubo S, Niimura F, Matsusaka T, Fogo A, Hogan BL, Ichikawa I (1998) Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption. Kidney Int 53:617–625

    Article  CAS  PubMed  Google Scholar 

  49. Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC 4th (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10

    Article  CAS  PubMed  Google Scholar 

  51. Bouchard M (2004) Transcriptional control of kidney development. Differentiation 72:295–306

    Article  CAS  PubMed  Google Scholar 

  52. Ray S, Sherman CT, Lu M, Brasier AR (2002) Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity. Mol Endocrinol 16:824–836

    Article  CAS  PubMed  Google Scholar 

  53. Guo Y, Mascareno E, Siddiqui MA (2004) Distinct components of Janus kinase/signal transducer and activator of transcription signaling pathway mediate the regulation of systemic and tissue localized renin-angiotensin system. Mol Endocrinol 18:1033–1041

    Article  CAS  PubMed  Google Scholar 

  54. Date S, Nibu Y, Yanai K, Hirata J, Yagami K, Fukamizu A (2004) Finb, a multiple zinc finger protein, represses transcription of the human angiotensinogen gene. Int J Mol Med 13:637–642

    CAS  PubMed  Google Scholar 

  55. Jamaluddin M, Meng T, Sun J, Boldogh I, Han Y, Brasier AR (2000) Angiotensin II induces nuclear factor (NF)-kappaB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-kappaB activation. Mol Endocrinol 14:99–113

    Article  CAS  PubMed  Google Scholar 

  56. Philippe J, Drucker DJ, Habener JF (1987) Glucagon gene transcription in an islet cell line is regulated via a protein kinase C-activated pathway. J Biol Chem 262:1823–1828

    Google Scholar 

  57. Wang TT, Chen X, Wu XH, Zhang SL, Chan JS (1999) Molecular mechanism(s) of action of isoproterenol on the expression of the angiotensinogen gene in opossum kidney proximal tubular cells. Kidney Int 55:1713–1723

    Article  CAS  PubMed  Google Scholar 

  58. Lin KH, Lee HY, Shih CH, Yen CC, Chen SL, Yang RC, Wang CS (2003) Plasma protein regulation by thyroid hormone. J Endocrinol 179:367–377

    Article  CAS  PubMed  Google Scholar 

  59. Harte AL, McTernan PG, McTernan CL, Crocker J, Starcynski J, Barnett AH, Matyka K, Kumar S (2003) Insulin increases angiotensinogen expression in human abdominal subcutaneous adipocytes. Diabetes Obes Metab 5:462–467

    Article  CAS  PubMed  Google Scholar 

  60. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110:229–238

    Article  CAS  PubMed  Google Scholar 

  61. Shi Q, Gross KW, Sigmund CD (2001) Retinoic acid-mediated activation of the mouse renin enhancer. J Biol Chem 276:3597–3603

    Google Scholar 

  62. Klar J, Vitzthum H, Kurtz A (2004) Aldosterone enhances renin gene expression in juxtaglomerular cells. Am J Physiol 286:F349-F355

    Article  CAS  Google Scholar 

  63. Takeda K, Ichiki T, Funakoshi Y, Ito K, Takeshita A (2000) Downregulation of angiotensin II type 1 receptor by all-trans retinoic acid in vascular smooth muscle cells. Hypertension 35:297–302

    CAS  PubMed  Google Scholar 

  64. Vilar J, Gilbert T, Moreau E, Merlet-Benichou C (1996) Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int 49:1478–1487

    CAS  PubMed  Google Scholar 

  65. Zhang H, Palmer R, Gao X, Kreidberg J, Gerald W, Hsiao L, Jensen RV, Gullans SR, Haber DA (2003) Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr Biol 13:1625–1629

    Article  CAS  PubMed  Google Scholar 

  66. Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695

    Article  CAS  PubMed  Google Scholar 

  67. Qiao J, Uzzo R, Obara-Ishohara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554

    CAS  PubMed  Google Scholar 

  68. Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 109:123–135

    Article  CAS  PubMed  Google Scholar 

  69. Stirling D, Magness RR, Stone R, Waterman MR, Simpson ER (1990) Angiotensin II inhibits luteinizing hormone-stimulated cholesterol side chain cleavage expression and stimulates basic fibroblast growth factor expression in bovine luteal cells in primary culture. J Biol Chem 265:5–8

    Google Scholar 

  70. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Google Scholar 

  71. Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Lockwood GA, Rosenblum ND, Filmus J (1999) Glypican 3-deficient mice exhibit developmental overgrowth and some of the renal abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264

    CAS  PubMed  Google Scholar 

  72. Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387:151–158

    Article  CAS  PubMed  Google Scholar 

  73. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651–657

    CAS  PubMed  Google Scholar 

  74. AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726

    Google Scholar 

  75. Gendron L, Payet MD, Gallo-Payet N (2003) The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms. J Mol Endocrinol 31:359–372

    Article  CAS  PubMed  Google Scholar 

  76. Huwiler A, Stabel S, Fabbro D, Pfeilschifter (1995) Platelet-derived growth factor and angiotensin II stimulate the mitogen-activated protein kinase cascade in renal mesangial cells: comparison of hypertrophic and hyperplastic agonists. Biochem J 305:777–784

    CAS  PubMed  Google Scholar 

  77. Saward, L, Zahradka P (1997) Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 81:249–257

    CAS  PubMed  Google Scholar 

  78. Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM (1994) Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem 269:19626–19632

    Google Scholar 

  79. Karihaloo A, O’Rourke DA, Nickel C, Spokes K, Cantley LG (2001) Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J Biol Chem 276:9166–9173

    Google Scholar 

  80. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136

    Article  CAS  PubMed  Google Scholar 

  81. Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896

    Google Scholar 

  82. Seta K, Sadoshima J (2003) Phosphorylation of tyrosine 319 of the angiotensin II type 1 receptor mediates angiotensin II-induced trans-activation of the epidermal growth factor receptor. J Biol Chem 278:9019–9026

    Google Scholar 

  83. Yosypiv IV, Schroeder M (2003) Angiotensin (ANG) II stimulates ureteric bud (UB) cell branching morphogenesis in vitro via transactivation of epidermal growth factor receptor (EGFR). J Am Soc Nephrol 14:98A

    Article  Google Scholar 

  84. Rocic P, Govindarajan G, Sabri A, Lucchesi PA (2001) A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am J Physiol 280:C90–99

    CAS  PubMed  Google Scholar 

  85. Schafer B, Gschwind A, Ullrich A (2004) Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23:991–999

    Article  PubMed  Google Scholar 

  86. Horiuchi M, Akishita M, Dzau VJ (1998) Molecular and cellular mechanism of angiotensin II-mediated apoptosis. Endocr Res 24:307–314

    CAS  PubMed  Google Scholar 

  87. Fukizawa J, Booz GW, Hunt RA, Shimizu N, Karoor V, Baker KM, Dostal DE (2000) Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy. Hypertension 35:1191–1196

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mercedes Schroeder for superb technical assistance. Hoxb7-GFP mice were a kind gift from Dr. Frank Costantini (Columbia University, New York). This work was supported by NIH Grant Number P20 RR17659 from the National Center for Research Resources, DK-56264 and DK-62250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor V. Yosypiv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yosypiv, I.V., El-Dahr, S.S. Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Pediatr Nephrol 20, 1219–1229 (2005). https://doi.org/10.1007/s00467-005-1944-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-1944-3

Keywords

Navigation