Skip to main content
Log in

Bone mineral density and bone turnover in patients with Bartter syndrome

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The aim of this investigation was to evaluate bone mineral density (BMD), by use of DXA, and bone turnover, in patients with Bartter syndrome (BS). Ten patients (2 with BS type II and 8 with BS type III) were included in the procedure. Age at study varied between 2 and 30 years. During the studies usual treatment with indomethacin, spironolactone, and potassium chloride was maintained. Results were compared with those obtained in the 20 asymptomatic parents. Height of the patients at the time of the study did not differ from reference values (Z-score −1.2 to +0.8). Three patients (1 with BS type II and 2 with BS type III) presented reduced lumbar spine BMD or overt osteopenia (BMD Z-scores: −2.3, −1.3, and −1.1). BMD did not correlate significantly with age. Paternal and maternal femoral neck BMD values correlated significantly with lumbar spine BMD of the patients (r=0.65, P<0.05, and r=0.80, P<0.01). Lumbar spine BMD Z-scores correlated negatively with urinary Ca excretion when values both from patients and parents were jointly analyzed (r=−0.43, P<0.05). Plasma calcium concentration was significantly higher (P<0.001) and plasma phosphate Z-score was significantly lower (P<0.05) in the patients than in the parents. However, no significant differences were observed in values for intact PTH, 1,25 (OH)2D3 and 25 (OH)D3. Intact PTH values correlated positively with BMD Z-scores at lumbar spine (r=0.45, P<0.05) and at femoral neck (r=0.63, P<0.01). Age-corrected biochemical markers of bone formation (plasma alkaline phosphatase and osteocalcin concentrations) were normal whereas age-corrected markers of bone reabsorption (urinary PYD and DPD excretion) were significantly higher than parental values (P<0.01 and <0.05, respectively). We conclude that: (1) reduced BMD is not an exclusive feature of neonatal BS and it can be also observed in classic BS; (2) the loss of bone mineral is not progressive, probably because of the hypocalciuric effect of indomethacin therapy; and (3) this study did not determine whether loss of bone mass is the cause or the consequence of hypercalciuria although the beneficial effect of indomethacin therapy implies the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rodriguez-Soriano J (1998) Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol 12:315–327

    CAS  PubMed  Google Scholar 

  2. Hebert SC (2003) Bartter syndrome. Curr Opin Nephrol Hypertens 12:527–532

    PubMed  Google Scholar 

  3. García-Nieto V, Fernández C, Monge M, de Sequera M, Rodrigo MD (1997) Bone mineral density in pediatric patients with idiopathic hypercalciuria. Pediatr Nephrol 11:578–583

    Article  PubMed  Google Scholar 

  4. Penido M-GMG, Lima EM, Marino VSP, Tupinambá A-LF, França A, Souto MFO (2003) Bone alterations in children with idiopathic hypercalciuria at time of diagnosis. Pediatr Nephrol 18:133–139

    PubMed  Google Scholar 

  5. Freundlich M, Alonzo F, Bellorin-Font E, Weisinger JR (2002) Reduced bone mass in children with idiopathic hypercalciuria and in their asymptomatic mothers. Nephrol Dial Transplant 17:1396–1401

    Google Scholar 

  6. García-Nieto V, Navarro JF, Monge M, García-Rodríguez VE (2003) Bone mineral density in girls and their mothers with idiopathic hypercalciuria. Nephron Clin Pract 94:c89–c93

    Article  PubMed  Google Scholar 

  7. Shoemaker L, Welch TR, Bergstrom W, Abrams SA, Yergey AL, Vieira N (1993) Calcium kinetics in the hyperprostaglandin E syndrome. Pediatr Res 33:92–96

    CAS  PubMed  Google Scholar 

  8. Proesmans W (1997) Bartter syndrome and its neonatal variant. Eur J Pediatr 156:669–679

    Article  CAS  PubMed  Google Scholar 

  9. Rodríguez-Soriano J, Vallo A, Pérez de Nanclares G, Bilbao JR, Castaño L (2005) A founder mutation in the CLCNKB gene causes Bartter syndrome type III in Spain. Pediatr Nephrol, in press

  10. Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA (1995) Genetic influences on bone turnover, bone density, and fractures. Eur J Endocrinol 133:265–271

    CAS  PubMed  Google Scholar 

  11. Hernández M, Castellet J, Narvaiza JL, Rincón JM, Ruiz E, Sánchez E, Sobradillo B, Zurimendi A (1988) Curvas y tablas de crecimiento. Garci. Madrid

  12. Del Rio L, Carrascosa A, Pons F, Gussinyé M, Yeste D, Domenech FM (1994) Bone mineral density of the lumbar spine in Caucasian Mediterranean Spanish children and adolescents: changes related to age, sex and puberty. Pediatr Res 35:362–366

    PubMed  Google Scholar 

  13. Ballabriga A, Carrascosa A (2001) Nutrición en la infancia y adolescencia. 2nd edn. Ediciones Ergon, Madrid, p 731

  14. Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C (1994) Universal standarization for dual X-ray absporiometry: patient and phantom cross-calibration results. J Bone Miner Res 10:1503–1514

    Google Scholar 

  15. Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    CAS  PubMed  Google Scholar 

  16. Leonard MB, Propetrt KJ, Zemel BS, Stallings VA, Feldman HI (1999) Discrepancies in pediatric bone mineral density reference data: Potential for misdiagnosis of osteopenia. J Pediatr 135:182–188

    CAS  PubMed  Google Scholar 

  17. van der Sluis IM, Hop WC, van Leeuwen JPTM, Pols HAP, de Muinck Keizer-Schrama SMPF (2002) A cross-sectional study on biochemical parameters of bone turnover and vitamin D metabolites in healthy Dutch children and young adults. Horm Res 57:170

    Article  PubMed  Google Scholar 

  18. Husain SM, Mughal Z, Williams G, Ward K, Smith CS, Dutton J, Fraser WD (1999) Urinary excretion of pyridinium cross-links in healthy 4–10 year olds. Arch Dis Child 80:370–373

    CAS  PubMed  Google Scholar 

  19. Schönau E (2004) The peak bone mass concept: is still relevant? Pediatr Nephrol 19:825–831

    PubMed  Google Scholar 

  20. Ross PD, Knowlton W (1998) Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res 13:297–302

    CAS  PubMed  Google Scholar 

  21. Cruz DN, Wysolmerski JJ, Brickel HM, Gundberg CG, Simpson CA, Mitnick MA, Kliger AS, Lorber MI, Basadonna GP, Friedman AKL, Insogna KL, Bia MJ (2001) Parameters of bone turnover predict bone loss in renal transplant patients: a longitudinal study. Transplantation 72:83–88

    Article  CAS  PubMed  Google Scholar 

  22. Boechat MI, Westra SJ, Van Dop C, Kaufman F, Gilsanz V, Roe TF (1996) Decreased cortical and increased cancellous bone in two children with primary hyperparathyroidism. Metabolism 45:76–81

    Article  CAS  PubMed  Google Scholar 

  23. Restrepo de Rovetto C, Welch TR, Hug G, Clark KE, Bergstrom W (1989) Hypercalciuria with Bartter syndrome: evidence for an abnormality of vitamin D metabolism. J Pediatr 115:397–404

    PubMed  Google Scholar 

  24. Weisinger JR (1999) Bone loss in hypercalciuria: Cause or consequence? Am J Kidney Dis 33:1–4

    PubMed  Google Scholar 

  25. Shoemaker LR, Bergstrom WH, Ragosta K, Welch TR (1998) Humoral factor in children with neonatal Bartter syndrome reduces bone calcium uptake in vitro. Pediatr Nephrol 12:371–376

    Article  CAS  PubMed  Google Scholar 

  26. Williams WJ, Shoemaker LR, Schurman SJ, Welch TR, Bergstrom WH (1999) Conjunctive effects of fibroblast growth factor and glycosaminoglycan on bone metabolism in neonatal Bartter syndrome. Pediatr Res 45:726–732

    CAS  PubMed  Google Scholar 

  27. Schurman SJ, Bergstrom WH, Shoemaker LR, Welch TR (2004) Angiotensin II reduces calcium uptake into bone. Pediatr Nephrol 19:33–35

    Article  PubMed  Google Scholar 

  28. Bijlsma JW, Rabelink AJ (1990) Influence of indomethacin on extracellular calcium homeostasis. Ann Rheum Dis 49:125–127

    CAS  PubMed  Google Scholar 

  29. Gomaa AA, Hassan HA, Ghaneimah SA (1990) Effect of aspirin and indomethacin on the serum and urinary excretions of calcium, magnesium and phosphate. Pharmacol Res 22:59–70

    Google Scholar 

  30. Legroux-Gerot I, Catanzariti L, Marchandise X, Duquesnoy B, Cortet B (2004) Bone mineral density changes in hypercalciuretic osteoporotic men treated with thiazide diuretics. Joint Bone Spine 71:51–55

    Article  PubMed  Google Scholar 

  31. Lutz J, Tesar R (1990) Mother-daughter pairs: spinal and femoral bone densities and dietary intake. Am J Clin Nutr 52:872–877

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Dr Dinna N. Cruz who, when working at Yale University School of Medicine, contributed to the design of the study and helped with the determination of biochemical markers of bone turnover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Rodríguez-Soriano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Soriano, J., Vallo, A. & Aguirre, M. Bone mineral density and bone turnover in patients with Bartter syndrome. Pediatr Nephrol 20, 1120–1125 (2005). https://doi.org/10.1007/s00467-005-1901-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-1901-1

Keywords

Navigation