Skip to main content

Advertisement

Log in

Genetic polymorphisms and risk for acute renal failure in preterm neonates

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Acute renal failure (ARF) affects about 10% of severely ill neonates. Recent studies have shown that genetic polymorphisms of proteins that play a role in neonatal physiology may contribute to individual susceptibility to both ARF and its risk factors. Our review summarizes the data collected to date. Studies have shown that the risk of preterm neonates for ARF is directly associated with a combination of high tumor necrosis factor-α producer and low interleukin-6 producer genotypes, as well as with low heat shock protein 72 producer genotype. Premature birth is itself the most important risk factor for a number of complications, including ARF, and recent studies have also shown an association between several maternal and fetal cytokine genetic polymorphisms and increased inflammatory response in preterm neonates. These polymorphisms could also be associated with increased risk for disorders such as sepsis and necrotizing enterocolitis, which lead to renal hypoperfusion and ARF. Genetic polymorphisms of the renin-angiotensin-aldosterone system have not been shown to directly influence risk for ARF. They may, however, be associated with patent ductus arteriosus, poor postnatal adaptation, and heart failure, which are all prevalent risk factors for ARF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guignard JP, Gouyon JB, John EG (1991) Vasoactive factors in the immature kidney. Pediatr Nephrol 5:443–446

    Google Scholar 

  2. Stapleton FB, Jones DP, Green RS (1987) Acute renal failure in neonates: incidence, etiology and outcome. Pediatr Nephrol 1:314–320

    Article  Google Scholar 

  3. Tóth-Heyn P, Drukker A, Guignard JP (2000) The stressed neonatal kidney: from pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr Nephrol 14:227–239

    Article  Google Scholar 

  4. Tufro-McReddie A, Gomez RA (1993) Ontogeny of the renin-angiotensin system. Semin Nephrol 13:519–530

    Google Scholar 

  5. Chevalier RL (1996) Developmental renal physiology of the low birth weight pre-term newborn. J Urol 156:714–719

    Article  Google Scholar 

  6. Tack ED, Perlman JM (1988) Renal failure in sick hypertensive premature infants receiving captopril therapy. J Pediatr 112:805–810

    Google Scholar 

  7. Prevot A, Mosig D, Guignard JP (2002) The effects of losartan on renal function in the newborn rabbit. Pediatr Res 51:728–732

    Article  Google Scholar 

  8. Guignard JP, Burgener F, Calame A (1981) Persistent anuria in a neonate: a side effect of captopril? Int J Pediatr Nephrol 2:133

    Google Scholar 

  9. Tack ED, Perlman JM (1988) Renal failure in sick hypertensive premature infants receiving captopril therapy. J Pediatr 112:805–810

    Google Scholar 

  10. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin-1-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346

    CAS  PubMed  Google Scholar 

  11. Duncan JA, Scholey JW, Miller JA (2001) Angiotensin II type 1 receptor gene polymorphisms in humans: physiology and pathophysiology of the genotypes. Curr Opin Nephrol Hypertens 10:111–116

    Google Scholar 

  12. Nobilis A, Kocsis I, Tóth-Heyn P, Treszl A, Schuler A, Tulassay T, Vásárhelyi B (2001) Variance of ACE and AT1 receptor gene does not influence the risk of neonatal acute renal failure. Pediatr Nephrol16:1063–1066

    Google Scholar 

  13. Bender JW, Davitt MK, Jose P (1978) Angiotensin-I-converting enzyme activity in term and premature infants. Biol Neonate 34:19–23

    Google Scholar 

  14. Walther T, Faber R, Maul B, Schultheiss HP, Siems WE, Stepan H (2002) Fetal, neonatal cord, and maternal plasma concentrations of angiotensin-converting enzyme (ACE) Prenat Diagn 22:111–113

    Google Scholar 

  15. Harding D, Dhamrait S, Marlow N, Whitelaw A, Gupta S, Humphries S, Montgomery H (2003) Angiotensin-converting enzyme DD genotype is associated with worse perinatal cardiorespiratory adaptation in preterm infants. J Pediatr 143:746–749

    Article  Google Scholar 

  16. Guba M, Steinbauer M, Buchner M, Frolich D, Farkas S, Jauch KW, Anthuber M (2000) Differential effects of short-term ace- and AT1-receptor inhibition on postischemic injury and leukocyte adherence in vivo and in vitro. Shock 13:190–196

    Google Scholar 

  17. Treszl A, Szabó M, Dunai G, Nobilis A, Kocsis I, Machay T, Tulassay T, Vásárhelyi B (2003) Angiotensin II type 1 receptor A1166C polymorphism and prophylactic indomethacin treatment induced ductus arteriosus closure in very low birth weight neonates. Pediatr Res 54:753–755

    Article  Google Scholar 

  18. Lipworth BJ, Dagg KD (1994) Vasoconstrictor effects of angiotensin II on the pulmonary vascular bed. Chest 105:1360–1364

    Google Scholar 

  19. Cargill RI, Lipworth BJ (1995) The role of the renin-angiotensin and natriuretic peptide systems in the pulmonary vasculature. Br J Clin Pharmacol 40:11–18

    Google Scholar 

  20. Thijs A, Thijs LG (1998) Pathogenesis of renal failure in sepsis. Kidney Int 66: S34–S37

    Google Scholar 

  21. Kohan DE (1994) Role of endothelin and tumour necrosis factor in the renal response to sepsis. Nephrol Dial Transplant 9:73–77

    Google Scholar 

  22. Uddman E, Moller S, Adner M, Edvinsson L (1999) Cytokines induce increased endothelin ET(B) receptor-mediated contraction. Eur J Pharmacol 376:223–232

    Article  Google Scholar 

  23. Nakamura M, Yoshida H, Arakawa N, Saitoh S, Satoh M, Hiramori K (2000) Effects of tumor necrosis factor-α on basal and stimulated endothelium-dependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol 36:487–492

    Article  Google Scholar 

  24. Tschaikowsky K, Sagner S, Lehnert N, Kaul M, Ritter J (2000) Endothelin in septic patients: effects on cardiovascular and renal function and its relationship to proinflammatory cytokines. Crit Care Med 28:1854–1860

    Article  Google Scholar 

  25. Treszl A, Tóth-Heyn P, Kocsis I, Nobilis A, Schuler A, Tulassay T, Vásárhelyi B (2002) Interleukin genetic variants and the risk of renal failure in infants with infection. Pediatr Nephrol 17:713–717

    Article  Google Scholar 

  26. Daher S, Shulzhenko N, Morgun A, Mattar R, Rampim GF, Camano L, DeLima MG (2003) Associations between cytokine gene polymorphisms and recurrent pregnancy loss. J Reprod Immunol 58:69–77

    Article  Google Scholar 

  27. Unfried G, Tempfer C, Schneeberger C, Widmar B, Nagele F, Huber JC (2001) Interleukin 1 receptor antagonist polymorphism in women with idiopathic recurrent miscarriage. Fertil Steril 75:683–687

    Article  Google Scholar 

  28. Reid JG, Simpson NA, Walker RG, Economidou O, Shillito J, Gooi HC, Duffy SR, Walker JJ (2001) The carriage of pro-inflammatory cytokine gene polymorphisms in recurrent pregnancy loss. Am J Reprod Immunol 45:35–40

    Article  Google Scholar 

  29. Simhan HN, Krohn MA, Roberts JM, Zeevi A, Caritis SN (2003) Interleukin-6 promoter -174 polymorphism and spontaneous preterm birth. Am J Obstet Gynecol 189:915–918

    Article  Google Scholar 

  30. Treszl A, Kocsis I, Szathmári M, Schuler A, Héninger E, Tulassay T, Vásárhelyi B (2003) Genetic variants of TNF-α, IL-1beta, IL-4 receptor α-chain, IL-6 and IL-10 genes are not risk factors for sepsis in low-birth-weight infants. Biol Neonate 83:241–245

    Article  Google Scholar 

  31. Harding D, Dhamrait S, Millar A, Humphries S, Marlow N, Whitelaw A, Montgomery H (2003) Is interleukin-6 -174 genotype associated with the development of septicemia in preterm infants? Pediatrics 112:800–803

    Article  Google Scholar 

  32. Ahrens P, Kattner E, Kohler B, Hartel C, Seidenberg J, Segerer H, Moller J, Gopel W (2004) Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res 55:652–656

    Article  Google Scholar 

  33. Treszl A, Héninger E, Kálmán A, Schuler A, Tulassay T, Vásárhelyi B (2003) Lower prevalence of IL-4 receptor alpha-chain gene G variant in very-low-birth-weight infants with necrotizing enterocolitis. J Pediatr Surg 38:1374–1378

    Article  Google Scholar 

  34. Héninger E, Treszl A, Kocsis I, Dérfalvi B, Tulassay T, Vásárhelyi B (2002) Genetic variants of the interleukin-18 promoter region (-607) influence the course of necrotising enterocolitis in very low birth weight neonates. Eur J Pediatr 161:410–411

    Article  Google Scholar 

  35. Treszl A, Kocsis I, Szathmári M, Schuler A, Tulassay T, Vásárhelyi B (2001) Genetic variants of the tumour necrosis factor-alpha promoter gene do not influence the development of necrotizing enterocolitis. Acta Paediatr 90:1182–1185

    Article  Google Scholar 

  36. Molitoris BA (1991) New insights into the cell biology of ischemic acute renal failure. J Am Soc Nephrol 1:1263–1270

    Google Scholar 

  37. Ozer EA, Yilmaz O, Akhisaroglu M, Tuna B, Bakiler AR, Ozer E. (2002) Heat shock protein 70 expression in neonatal rats after hypoxic stress. J Matern Fetal Neonatal Med 12:112–117

    Google Scholar 

  38. Vicencio A, Bidmon B, Ryu J, Reidy K,·Thulin G, Mann A, Gaudio KM, Kashgarian M, Siegel NJ (2003) Developmental expression of HSP-72 and ischemic tolerance of the immature kidney. Pediatr Nephrol 18:85–91

    Google Scholar 

  39. Pociot F, Ronningen KS, Nerup J (1993) Polymorphic analysis of the human MHC-linked heat shock protein 70 (HSP70–2) and HSP70-Hom genes in insulin-dependent diabetes mellitus (IDDM). Scand J Immunol 38:491–495

    CAS  PubMed  Google Scholar 

  40. Fekete A, Treszl A, Tóth-Heyn P, Vannay A, Tordai A, Tulassay T, Vásárhelyi B (2003) Association between heat shock protein 72 gene polymorphism and acute renal failure in premature neonates. Pediatr Res 54:452–455

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by OTKA grant T046086 and T 034605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tivadar Tulassay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vásárhelyi, B., Tóth-Heyn, P., Treszl, A. et al. Genetic polymorphisms and risk for acute renal failure in preterm neonates. Pediatr Nephrol 20, 132–135 (2005). https://doi.org/10.1007/s00467-004-1711-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1711-x

Keywords

Navigation