Skip to main content

Advertisement

Log in

Genetic disorders of transporters/channels in the inner ear and their relation to the kidney

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Inner ear physiology is reviewed with emphasis on features common to renal physiology. Genetic disorders in transporters/channels for chloride (ClC-K), bicarbonate (Cl-/HCO3- exchanger), protons (H+-ATPase), sodium (ENaC, NKKC1, NBC3, NHE3), potassium (KCNQ1/KCNE1, Kcc4), and water (AQP4) in the inner ear and their relation to the kidney are discussed. Based on data from human disorders (with or without mouse counterparts) and mouse models (without human counterparts) this article focuses on the involvement of these transporters/channels in hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Willems PJ (2000) Genetic causes of hearing loss. N Engl J Med 342:1101–1109

    Article  CAS  PubMed  Google Scholar 

  2. Tekin M, Arnos KS, Pandya A (2001) Advances in hereditary deafness. Lancet 358:1082–1090

    Article  CAS  PubMed  Google Scholar 

  3. Couloigner V, Sterkers O, Friedlander G, Ferrary E (2003) Syndromes ‘reins-oreilles’: aspects moléculaires. Actualités Néphrolologiques Flammarion, Paris, pp 147–161

  4. Ferrary E, Sterkers O (1998) Mechanisms of endolymph secretion. Kidney Int 65:98–103

    Google Scholar 

  5. Salt AN (2001) Dynamics of the inner ear fluids. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the ear. Singular, San Diego, pp 333–355

  6. Wangemann P (2002) K+ cycling and its regulation in the cochlea and the vestibular labyrinth. Audiol Neurootol 7:199–205

    Article  CAS  PubMed  Google Scholar 

  7. Peters TA. Kuijpers W, Tonnaer ELGM, Muijen van GNP, Jap PHK (1995) Distribution and features of melanocytes during inner ear development in pigmented and albino rats. Hear Res 85:169–180

    Article  CAS  PubMed  Google Scholar 

  8. Peters TA, Kuijpers W, Curfs JHAJ (2001) Occurrence of NaK-ATPase isoforms during rat inner ear development and functional implications. Eur Arch Otorhinolaryngol 258:67–73

    Article  CAS  PubMed  Google Scholar 

  9. Sage CL, Marcus DC (2001) Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells. Hear Res 160:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel β subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414:558–561

    Article  CAS  PubMed  Google Scholar 

  11. Couloigner V, Fay M, Djelidi S, Farman N, Escoubet B, Runembert I, Sterkers O, Friedlander G, Ferrary E (2001) Location and function of the epithelial Na channel in the cochlea. Am J Physiol Renal Physiol 280:F214–F222

    CAS  PubMed  Google Scholar 

  12. Bond BR, Ng LL, Schulte BA (1998) Identification of mRNA transcripts and immunohistochemical localization of Na/H exchanger isoforms in gerbil inner ear. Hear Res 123:1–9

    Article  CAS  PubMed  Google Scholar 

  13. Stankovic KM, Brown D, Alper SL, Adams JC (1997) Localization of pH regulating proteins H+-ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear. Hear Res 114:21–34

    Article  CAS  PubMed  Google Scholar 

  14. Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407

    Google Scholar 

  15. Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9

    Article  CAS  PubMed  Google Scholar 

  16. Waldegger S, Jeck N, Bart P, Peters M, Vizthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW (2002) Barttin increases surface expression and changes current properties in ClC-K channels. Pflug Arch Eur J Physiol 444:411–418

    Article  CAS  Google Scholar 

  17. Uchida S, Maromo F (2000) Severity impaired urine-concentrating ability in mice lacking the ClC-K1 chloride channel. Exp Nephrol 8:301–305

    Article  Google Scholar 

  18. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350:1314–1319

    Article  CAS  PubMed  Google Scholar 

  19. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW (2003) Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol 284:F229–F241

    CAS  PubMed  Google Scholar 

  20. Petrovic S, Wang Z, Ma L, Soleimani M (2003) Regulation of the apical Cl-/HCO3- exchanger pendrin in rat collecting duct in metabolic acidosis. Am J Physiol Renal Physiol 284:F103–F112

    CAS  PubMed  Google Scholar 

  21. Royaux I, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845

    Article  CAS  PubMed  Google Scholar 

  22. Everett LA, Morsli H, Wu DK, Green ED (1999) Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) suggest a key role for pendrin in the inner ear. Proc Natl Acad Sci U S A 96:9727–9732

    Article  CAS  PubMed  Google Scholar 

  23. Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161

    Article  CAS  PubMed  Google Scholar 

  24. Karet FE (2002) Inherited distal renal tubular acidosis. J Am Soc Nephrol 13:2178–2184

    CAS  PubMed  Google Scholar 

  25. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CWRJ, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skovorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    CAS  PubMed  Google Scholar 

  26. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch ABS, Morton CC, Axon PR, Akil I, Al-Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li Volti G, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez-Soriano J, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803

    Article  CAS  PubMed  Google Scholar 

  27. Dou H, Friberg K, Cardell EL, Lifton R, Choo D (2003) Mice lacking the B1 subunit of H+-ATPase have normal hearing. Hear Res 180:76–84

    Article  CAS  PubMed  Google Scholar 

  28. Guipponi M, Vuagniaux G, Wattenhofer M, Shibuya K, Vazquez M, Dougherty L, Scamuffa N, Guida E, Okui M, Rossie C, Hancock M, Buchet K, Reymond A, Hummler E, Marzella PL, Kudoh J, Shimizu N, Scott HS, Antonarakis SE, Rossier BC (2002) The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet 11:2829–2836

    Article  CAS  PubMed  Google Scholar 

  29. Lee YJ, Park D, Kim SY, Park WJ (2003) Pathogenic mutations but no polymorphisms in congenital and childhood onset autosomal recessive deafness disrupt the proteolytic activity of TMPRSS3. J Med Genet 40:629–631

    Article  CAS  PubMed  Google Scholar 

  30. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189

    Article  CAS  PubMed  Google Scholar 

  31. Casimiro MC, Knollmann BV, Ebert SN, Vary JC Jr, Greene AE, Franz MR, Grinberg A, Huang SP, Pfeifer K (2001) Targeted disruption of the kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proc Natl Acad Sci U S A 98:2526–2531

    Article  CAS  PubMed  Google Scholar 

  32. Warth R, Barhanin J (2002) The multifaceted phenotype of the knockout mouse for the KCNE1 potassium channel gene. Am J Physiol Regul Integr Comp Physiol 282:R639–R648

    CAS  PubMed  Google Scholar 

  33. Tyson J, Tranebjaerg L, Bellman S, Wren C, Taylor JFN, Bathen J, Sorland SJ, Lund O, Malcolm S, Pembrey M, Bhattacharya S, Bitner-Glindzicz M (1997) IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet 6:2179–2185

    Article  CAS  PubMed  Google Scholar 

  34. Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    CAS  PubMed  Google Scholar 

  35. Delpire E, Lu J, England R, Dull C, Thorne T (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22:192–195

    Article  CAS  PubMed  Google Scholar 

  36. Rybak LP (1993) Ototoxicity of loop diuretics. Otolaryngol Clin North Am 26:829–844

    CAS  PubMed  Google Scholar 

  37. Wall SM, Fischer MP, Metha P, Hassell KA, Park SJ (2001) Contribution of the Na+-K+-2Cl- cotransporter NKCC1 to Cl- secretion in rat OMCD. Am J Physiol Renal Physiol 280:F913–F921

    CAS  PubMed  Google Scholar 

  38. Bok D, Galbraith G, Lopez, Woodruff M, Nusinowitz S, BeltrandelRio H, Huang W, Zhao S, Geske R, Montgomery C, Sligtenhorst I van, Friddle C, Platt K, Sparks MJ, Pushkin A, Abuladze N, Ishiyama A, Dukkipati R, Liu W, Kurtz I (2003) Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34:313–319

    Article  CAS  PubMed  Google Scholar 

  39. Pushkin A, Yip KP, Clark I, Abuladze N, Kwon TH, Tsuruoka S, Schwartz GJ, Nielsen S, Kurtz I (1999) NBC3 expression in rabbit collecting duct; colocalization with vacuolar H+-ATPase. Am J Physiol Renal Physiol 46:F974–F981

    Google Scholar 

  40. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull G (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19:282–285

    Article  CAS  PubMed  Google Scholar 

  41. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 278:31233–31237

    Article  Google Scholar 

  43. Rotig A, Munnich A (2003) Genetic features of mitochondrial respiratory chain disorders. J Am Soc Nephrol 14:2995–3007

    PubMed  Google Scholar 

  44. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394

    Article  CAS  PubMed  Google Scholar 

  45. Mhatre AN, Jero J, Chiappini I, Bolasco G, Barbara M, Lalwani AK (2002) Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Meniere’s disease. Hear Res 170:59–69

    Article  CAS  PubMed  Google Scholar 

  46. Sterkers O, Ferrary E, Amiel C (1984) Inter-and intracompartmental osmotic gradients within the rat cochlea. Am J Physiol 247:F602–F606

    CAS  PubMed  Google Scholar 

  47. Lin J, Ozeki M, Javel E, Zhao Z, Pan W, Schlentz E, Levine S (2003) Identification of gene expression profiles in rat ears with cDNA microarrays. Hear Res 175:2–13

    Article  CAS  PubMed  Google Scholar 

  48. Abe S, Katagiri T, Saito-Hisaminato A (2003) Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. Am J Hum Genet 72:73–82

    Article  CAS  PubMed  Google Scholar 

  49. Peters TA, Tonnaer ELGM, Kuijpers W, Cremers CWRJ, Curfs JHAJ (2002) Differences in endolymphatic sac mitochondria-rich cells indicate specific functions. Laryngoscope 112:534–541

    Article  PubMed  Google Scholar 

  50. Peters TA, Tonnaer ELGM, Kuijpers W, Curfs JHAJ (2003) Changes in ultrastructural characteristics of endolymphatic sac ribosome-rich cells of the rat during development. Hear Res 176:94–104

    Article  PubMed  Google Scholar 

  51. Couloigner V, Teixeira M, Sterkers O, Rask-Andersen H, Ferrary E (2004) The endolymphatic sac: its role in the inner ear. Med Sci (Paris) 20:304–310

    Google Scholar 

  52. Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y (2002) Gene transfer into supporting cells of the organ of Corti. Hear Res 173:187–197

    Article  CAS  PubMed  Google Scholar 

  53. Han D, Yu Z, Fan E, Liu C, Liu S, Li Y, Liu Z (2004) Morphology of auditory hair cells in guinea pig cochlea after transgene expression. Hear Res 190:25–30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo A. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, T.A., Monnens, L.A.H., Cremers, C.W.R.J. et al. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney. Pediatr Nephrol 19, 1194–1201 (2004). https://doi.org/10.1007/s00467-004-1626-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1626-6

Keywords

Navigation