Skip to main content

Advertisement

Log in

Molecular physiology, pathology, and regulation of the growth hormone/insulin-like growth factor-I system

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Since the somatomedin hypothesis of growth hormone (GH) action was first formulated nearly 50 years ago, the key roles of both GH and insulin-like growth factor (IGF)-I in human growth have been confirmed and extended to include local effects on tissue maintenance and repair. More recent insights have revealed a dark side to the GH/IGF-I signaling system. Both proteins have been implicated as potential contributing factors in selected human cancers, and normal activity through this signaling pathway has been linked to diminished lifespan in experimental animals. This review highlights both the positive and negative aspects of the GH/IGF-I-growth pathway. The overall goal is to reinforce the need for more complete understanding of the mechanisms of signaling and action of GH and IGF-I, in order to separate, if possible, the potentially beneficial outcomes on growth and on tissue maintenance and repair from deleterious effects on cancer risk and lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Salmon WD, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49:825–836

    CAS  PubMed  Google Scholar 

  2. Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10:68–91

    CAS  PubMed  Google Scholar 

  3. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    Article  CAS  PubMed  Google Scholar 

  4. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A (2001) The somatomedin hypothesis: 2001. Endocr Rev 22:53–74

    Article  PubMed  Google Scholar 

  5. Melmed S (2001) In: DeGroot LJ, Jameson JL (eds) Saunders, Philadelphia, pp 300–312

  6. Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58

    Article  CAS  PubMed  Google Scholar 

  7. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim YH, Yee D (2004) Insulin-like growth factor-I and cancer risk. Growth Horm IGF Res (in press)

  9. Laban C, Bustin SA, Jenkins PJ (2003) The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab 14:28–34

    Article  CAS  PubMed  Google Scholar 

  10. Mayo KE (1996) A little lesson in growth regulation. Nat Genet 12:8–9

    Article  CAS  PubMed  Google Scholar 

  11. Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J (1994) Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev 15:369-390

    Article  CAS  PubMed  Google Scholar 

  12. Goddard AD, Covello R, Luoh SM, Clackson T, Attie KM, Gesundheit N, Rundle AC, Wells JA, Carlsson LM (1995) Mutations of the growth hormone receptor in children with idiopathic short stature. The Growth Hormone Insensitivity Study Group. N Engl J Med 333:1093–1098

    Article  CAS  PubMed  Google Scholar 

  13. Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD (2003) IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 349:2211–2222

    Article  CAS  PubMed  Google Scholar 

  14. Woods KA, Camacho-Hubner C, Savage MO, Clark AJ (1996) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 335:1363–1367

    Article  CAS  PubMed  Google Scholar 

  15. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA (1993) IGF-I is required for normal embryonic growth in mice. Genes Dev 7:2609–2617

    CAS  PubMed  Google Scholar 

  16. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    Article  CAS  PubMed  Google Scholar 

  17. Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229:141–162

    Article  CAS  PubMed  Google Scholar 

  18. Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R, Goffin V, Coschigano K, Gaillard-Kelly M, Kopchick J, Baron R, Kelly PA (2000) Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 106:1095–1103

    CAS  PubMed  Google Scholar 

  19. Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142:4349–4356

    Article  CAS  PubMed  Google Scholar 

  20. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  21. Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A (1997) Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 99:2961–2970

    CAS  PubMed  Google Scholar 

  22. McCarthy TL, Centrella M, Canalis E (1989) Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology 124:1247–1253

    CAS  PubMed  Google Scholar 

  23. Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, Ohta T, Kadowaki T, Nakamura K, Kawaguchi H (2000) Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 105:935–943

    CAS  PubMed  Google Scholar 

  24. Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D (2002) Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 109:347–355

    Article  CAS  PubMed  Google Scholar 

  25. Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116

    Article  CAS  PubMed  Google Scholar 

  26. Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95:15603–15607

    Article  CAS  PubMed  Google Scholar 

  27. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  CAS  PubMed  Google Scholar 

  28. Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Google Scholar 

  29. Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148

    Article  CAS  PubMed  Google Scholar 

  30. Caroni P, Schneider C (1994) Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4. J Neurosci 14:3378–3388

    CAS  PubMed  Google Scholar 

  31. Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124:820–825

    CAS  PubMed  Google Scholar 

  32. DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259:E89–E95

    CAS  PubMed  Google Scholar 

  33. Carson JA, Nettleton D, Reecy JM (2002) Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 16:207–209

    CAS  PubMed  Google Scholar 

  34. Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396

    Article  CAS  PubMed  Google Scholar 

  35. Kaaks R, Lundin E, Rinaldi S, Manjer J, Biessy C, Soderberg S, Lenner P, Janzon L, Riboli E, Berglund G, Hallmans G (2002) Prospective study of IGF-I, IGF-binding proteins, and breast cancer risk, in northern and southern Sweden. Cancer Causes Control 13:307–316

    Article  PubMed  Google Scholar 

  36. Missmer SA, Haiman CA, Hunter DJ, Willett WC, Colditz GA, Speizer FE, Pollak MN, Hankinson SE (2002) A sequence repeat in the insulin-like growth factor-1 gene and risk of breast cancer. Int J Cancer 100:332–336

    Article  CAS  PubMed  Google Scholar 

  37. Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140:5075–5081

    Article  CAS  PubMed  Google Scholar 

  38. Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM (1996) Targeted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137:321–330

    Article  CAS  PubMed  Google Scholar 

  39. Tornell J, Carlsson B, Pohjanen P, Wennbo H, Rymo L, Isaksson O (1992) High frequency of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice created from two different strains of mice. J Steroid Biochem Mol Biol 43:237–242

    Article  CAS  PubMed  Google Scholar 

  40. Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF (1995) Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer 72:1189–1193

    CAS  PubMed  Google Scholar 

  41. Arteaga CL, Kitten LJ, Coronado EB, Jacobs S, Kull FCJ, Allred DC, Osborne CK (1989) Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84:1418–1423

    CAS  PubMed  Google Scholar 

  42. Yang XF, Beamer WG, Huynh H, Pollak M (1996) Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res 56:1509–1511

    CAS  PubMed  Google Scholar 

  43. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279:563–566

    Article  CAS  PubMed  Google Scholar 

  44. Stattin P, Bylund A, Rinaldi S, Biessy C, Dechaud H, Stenman UH, Egevad L, Riboli E, Hallmans G, Kaaks R (2000) Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst 92:1910–1917

    Article  CAS  PubMed  Google Scholar 

  45. Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, Stampfer MJ (1999) Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 91:620–625

    Article  CAS  PubMed  Google Scholar 

  46. Palmqvist R, Hallmans G, Rinaldi S, Biessy C, Stenling R, Riboli E, Kaaks R (2002) Plasma insulin-like growth factor 1, insulin-like growth factor binding protein 3, and risk of colorectal cancer: a prospective study in northern Sweden. Gut 50:642–646

    Article  CAS  PubMed  Google Scholar 

  47. Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168

    Article  CAS  PubMed  Google Scholar 

  48. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  CAS  PubMed  Google Scholar 

  49. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  50. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  CAS  PubMed  Google Scholar 

  51. Apfeld J, Kenyon C (1998) Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95:199–210

    Article  CAS  PubMed  Google Scholar 

  52. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  CAS  PubMed  Google Scholar 

  53. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  CAS  PubMed  Google Scholar 

  54. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    Article  CAS  Google Scholar 

  55. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98:6736–6741

    Article  CAS  PubMed  Google Scholar 

  56. Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141:2608–2613

    Article  CAS  PubMed  Google Scholar 

  57. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  CAS  PubMed  Google Scholar 

  58. Herrington J, Carter-Su C (2001) Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab 12:252–257

    Article  CAS  PubMed  Google Scholar 

  59. Ridderstrale M, Degerman E, Tornqvist H (1995) Growth hormone stimulates the tyrosine phosphorylation of the insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase in primary adipocytes. J Biol Chem 270:3471–3474

    Article  CAS  PubMed  Google Scholar 

  60. Argetsinger LS, Norstedt G, Billestrup N, White MF, Carter-Su C (1996) Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem 271:29415–29421

    Article  CAS  PubMed  Google Scholar 

  61. Argetsinger LS, Hsu GW, Myers MGJ, Billestrup N, White MF, Carter-Su C (1995) Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem 270:14685–14692

    Article  CAS  PubMed  Google Scholar 

  62. Vanderkuur JA, Butch ER, Waters SB, Pessin JE, Guan KL, Carter-Su C (1997) Signaling molecules involved in coupling growth hormone receptor to mitogen-activated protein kinase activation. Endocrinology 138:4301–4307

    Article  CAS  PubMed  Google Scholar 

  63. VanderKuur J, Allevato G, Billestrup N, Norstedt G, Carter-Su C (1995) Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2. J Biol Chem 270:7587–7593

    Article  CAS  PubMed  Google Scholar 

  64. Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M, Honjo M, Takahashi M, Takahashi T, Hirai H, Tushima T, Akanuma Y, Fujita T, Komuro I, Yazaki Y, Kadowaki T (1997) Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 390:91–96

    Article  CAS  PubMed  Google Scholar 

  65. Chow JC, Ling PR, Qu Z, Laviola L, Ciccarone A, Bistrian BR, Smith RJ (1996) Growth hormone stimulates tyrosine phosphorylation of JAK2 and STAT5, but not insulin receptor substrate-1 or SHC proteins in liver and skeletal muscle of normal rats in vivo. Endocrinology 137:2880–2886

    Article  CAS  PubMed  Google Scholar 

  66. Love DW, Whatmore AJ, Clayton PE, Silva CM (1998) Growth hormone stimulation of the mitogen-activated protein kinase pathway is cell type specific. Endocrinology 139:1965–1971

    Article  CAS  PubMed  Google Scholar 

  67. Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C (1997) Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 17:6633–6644

    CAS  PubMed  Google Scholar 

  68. Ram PA, Waxman DJ (1997) Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem 272:17694–17702

    Article  CAS  PubMed  Google Scholar 

  69. Kim SO, Jiang J, Yi W, Feng GS, Frank SJ (1998) Involvement of the Src homology 2-containing tyrosine phosphatase SHP-2 in growth hormone signaling. J Biol Chem 273:2344–2354

    Article  CAS  PubMed  Google Scholar 

  70. Stofega MR, Wang H, Ullrich A, Carter-Su C (1998) Growth hormone regulation of SIRP and SHP-2 tyrosyl phosphorylation and association. J Biol Chem 273:7112–7117

    Article  CAS  PubMed  Google Scholar 

  71. Zhu T, Goh EL, Lobie PE (1998) Growth hormone stimulates the tyrosine phosphorylation and association of p125 focal adhesion kinase (FAK) with JAK2. Fak is not required for stat-mediated transcription. J Biol Chem 273:10682–10689

    Article  CAS  PubMed  Google Scholar 

  72. Adams TE, Hansen JA, Starr R, Nicola NA, Hilton DJ, Billestrup N (1998) Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 273:1285–1287

    Article  CAS  PubMed  Google Scholar 

  73. Greenhalgh CJ, Bertolino P, Asa SL, Metcalf D, Corbin JE, Adams TE, Davey HW, Nicola NA, Hilton DJ, Alexander WS (2002) Growth enhancement in suppressor of cytokine signaling 2 (SOCS-2)-deficient mice is dependent on signal transducer and activator of transcription 5b (STAT5b). Mol Endocrinol 16:1394–1406

    Article  CAS  PubMed  Google Scholar 

  74. Levy DE, Darnell JEJ (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Google Scholar 

  75. Gronowski AM, Rotwein P (1994) Rapid changes in nuclear protein tyrosine phosphorylation after growth hormone treatment in vivo. Identification of phosphorylated mitogen-activated protein kinase and STAT91. J Biol Chem 269:7874–7878

    CAS  PubMed  Google Scholar 

  76. Gronowski AM, Zhong Z, Wen Z, Thomas MJ, Darnell JEJ, Rotwein P (1995) In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol Endocrinol 9:171–177

    Article  CAS  PubMed  Google Scholar 

  77. Ram PA, Park SH, Choi HK, Waxman DJ (1996) Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem 271:5929–5940

    Article  CAS  PubMed  Google Scholar 

  78. Campbell GS, Meyer DJ, Raz R, Levy DE, Schwartz J, Carter-Su C (1995) Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J Biol Chem 270:3974–3979

    Article  CAS  PubMed  Google Scholar 

  79. Smit LS, Vanderkuur JA, Stimage A, Han Y, Luo G, Yu-Lee LY, Schwartz J, Carter-Su C (1997) Growth hormone-induced tyrosyl phosphorylation and deoxyribonucleic acid binding activity of Stat5A and Stat5B. Endocrinology 138:3426–3434

    Article  CAS  PubMed  Google Scholar 

  80. Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter-Su C (1996) The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol 10:519–533

    Article  CAS  PubMed  Google Scholar 

  81. Gebert CA, Park SH, Waxman DJ (1997) Regulation of signal transducer and activator of transcription (STAT) 5b activation by the temporal pattern of growth hormone stimulation. Mol Endocrinol 11:400–414

    Article  CAS  PubMed  Google Scholar 

  82. Yoon JB, Berry SA, Seelig S, Towle HC (1990) An inducible nuclear factor binds to a growth hormone-regulated gene. J Biol Chem 265:19947–19954

    CAS  PubMed  Google Scholar 

  83. Berry SA, Bergad PL, Whaley CD, Towle HC (1994) Binding of a growth hormone-inducible nuclear factor is mediated by tyrosine phosphorylation. Mol Endocrinol 8:1714–1719

    Article  CAS  PubMed  Google Scholar 

  84. Bergad PL, Shih HM, Towle HC, Schwarzenberg SJ, Berry SA (1995) Growth hormone induction of hepatic serine protease inhibitor 2.1 transcription is mediated by a Stat5-related factor binding synergistically to two gamma-activated sites. J Biol Chem 270:24903–24910

    Article  CAS  PubMed  Google Scholar 

  85. Teglund S, McKay C, Schuetz E, Deursen JM van, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841–850

    Article  CAS  PubMed  Google Scholar 

  86. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94:7239–7244

    Article  CAS  PubMed  Google Scholar 

  87. Pfitzner E, Jahne R, Wissler M, Stoecklin E, Groner B (1998) p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol 12:1582–1593

    Article  CAS  PubMed  Google Scholar 

  88. Ye SK, Agata Y, Lee HC, Kurooka H, Kitamura T, Shimizu A, Honjo T, Ikuta K (2001) The IL-7 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone acetylation. Immunity 15:813–823

    Article  CAS  PubMed  Google Scholar 

  89. Peng B, Sutherland KD, Sum EY, Olayioye M, Wittlin S, Tang TK, Lindeman GJ, Visvader JE (2002) CPAP is a novel stat5-interacting cofactor that augments stat5-mediated transcriptional activity. Mol Endocrinol 16:2019–2033

    Article  CAS  PubMed  Google Scholar 

  90. Rascle A, Johnston JA, Amati B (2003) Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 23:4162–4173

    Article  CAS  PubMed  Google Scholar 

  91. Xu M, Nie L, Kim SH, Sun XH (2003) STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPbeta. EMBO J 22:893–904

    Article  CAS  PubMed  Google Scholar 

  92. Rotwein P (1999) In: Rosenfeld R, Roberts CJ (eds) Molecular biology of IGF-I and IGF-II. Humana, Totowa, N.J., pp 19–35

  93. Kajimoto Y, Rotwein P (1991) Structure of the chicken insulin-like growth factor I gene reveals conserved promoter elements. J Biol Chem 266:9724–9731

    CAS  PubMed  Google Scholar 

  94. Kavsan VM, Koval AP, Grebenjuk VA, Chan SJ, Steiner DF, Roberts CTJ, LeRoith D (1993) Structure of the chum salmon insulin-like growth factor I gene. DNA Cell Biol 12:729–737

    CAS  PubMed  Google Scholar 

  95. Hall LJ, Kajimoto Y, Bichell D, Kim SW, James PL, Counts D, Nixon LJ, Tobin G, Rotwein P (1992) Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA Cell Biol 11:301–313

    CAS  PubMed  Google Scholar 

  96. Adamo ML, Ben-Hur H, Roberts CTJ, LeRoith D (1991) Regulation of start site usage in the leader exons of the rat insulin-like growth factor-I gene by development, fasting, and diabetes. Mol Endocrinol 5:1677–1686

    CAS  PubMed  Google Scholar 

  97. Shimatsu A, Rotwein P (1987) Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem 262:7894–7900

    CAS  PubMed  Google Scholar 

  98. Kim SW, Lajara R, Rotwein P (1991) Structure and function of a human insulin-like growth factor-I gene promoter. Mol Endocrinol 5:1964–1972

    CAS  PubMed  Google Scholar 

  99. Hoyt EC, Van Wyk JJ, Lund PK (1988) Tissue and development specific regulation of a complex family of rat insulin-like growth factor I messenger ribonucleic acids. Mol Endocrinol 2:1077–1086

    CAS  PubMed  Google Scholar 

  100. Woelfle J, Billiard J, Rotwein P (2003) Acute control of insulin-like growth factor-1 gene transcription by growth hormone through STAT5B. J Biol Chem 278:22696–22702

    Article  CAS  PubMed  Google Scholar 

  101. Woelfle J, Chia DJ, Rotwein P (2003) Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem 278:51261–51266

    Article  CAS  PubMed  Google Scholar 

  102. Bichell DP, Kikuchi K, Rotwein P (1992) Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol Endocrinol 6:1899–1908

    Article  CAS  PubMed  Google Scholar 

  103. An MR, Lowe WLJ (1995) The major promoter of the rat insulin-like growth factor-I gene binds a protein complex that is required for basal expression. Mol Cell Endocrinol 114:77–89

    Article  CAS  PubMed  Google Scholar 

  104. Mittanck DW, Kim SW, Rotwein P (1997) Essential promoter elements are located within the 5’ untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol 126:153–163

    Article  CAS  PubMed  Google Scholar 

  105. Wang L, Wang X, Adamo ML (2000) Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity. Endocrinology 141:1118–1126

    Article  CAS  PubMed  Google Scholar 

  106. Wang X, Talamantez JL, Adamo ML (1998) A CACCC box in the proximal exon 2 promoter of the rat insulin-like growth factor I gene is required for basal promoter activity. Endocrinology 139:1054–1066

    Article  CAS  PubMed  Google Scholar 

  107. Thomas MJ, Kikuchi K, Bichell DP, Rotwein P (1995) Characterization of deoxyribonucleic acid-protein interactions at a growth hormone-inducible nuclease hypersensitive site in the rat insulin-like growth factor-I gene. Endocrinology 136:562–569

    Article  CAS  PubMed  Google Scholar 

  108. Ye P, Umayahara Y, Ritter D, Bunting T, Auman H, Rotwein P, D’Ercole AJ (1997) Regulation of insulin-like growth factor I (IGF-I) gene expression in brain of transgenic mice expressing an IGF-I-luciferase fusion gene. Endocrinology 138:5466–5475

    Article  CAS  PubMed  Google Scholar 

  109. Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG (2003). Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med 349:1139–1147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research cited from our laboratory was supported by grants from the U. S. National Institutes of Health. J.W. was supported by a research fellowship from the European Society for Pediatric Endocrinology sponsored by Novo Nordisk and the Eli Lilly International Foundation. D.J.C. was supported by a research fellowship from the Lawson Wilkins Pediatric Endocrinology Society sponsored by Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rotwein.

Additional information

This work was presented in part at the IPNA Seventh Symposium on Growth and Development in Children with Chronic Kidney Disease: The Molecular Basis of Skeletal Growth, 1–3 April 2004, Heidelberg, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woelfle, J., Chia, D.J., Massart-Schlesinger, M.B. et al. Molecular physiology, pathology, and regulation of the growth hormone/insulin-like growth factor-I system. Pediatr Nephrol 20, 295–302 (2005). https://doi.org/10.1007/s00467-004-1602-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1602-1

Keywords

Navigation