Skip to main content

Advertisement

Log in

Kidney growth in 717 healthy children aged 0–18 months: a longitudinal cohort study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Kidney size is an important parameter in the evaluation of children with renal disease. However, reference materials for kidney size in healthy children have been limited beyond the neonatal period. We performed a longitudinal cohort study of 717 healthy children born at term with normal birth weight. Kidney size and shape were determined by ultrasonography and related to gender, age, and body size (weight, length, body surface area, skinfold thickness) at 0, 3, and 18 months of age. Gender-differentiated reference charts were established. Boys had significantly larger kidney volumes than girls (P<0.001) and larger relative volumes (kidney volume/weight) at 0 and 3 months (P<0.001), but not at 18 months of age. The best single predictor of gender-differentiated kidney volume was weight. Relative kidney volume changed with increasing age and height in a two-phase pattern: an initial decrease until a height of 65–70 cm was reached followed by a stable level. In conclusion, kidney size was significantly influenced by gender, age, and body composition. Relative kidney volume decreased with increasing age and height in a two-phase pattern. These characteristic changes in kidney volume indicated that infant kidney growth might be influenced by sex steroids and growth hormone in addition to body composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O’Neill WC (2000) Sonographic evaluation of renal failure. Am J Kidney Dis 35:1021–1038

    CAS  PubMed  Google Scholar 

  2. Callan NA, Otis CS, Weiner S (1985) Growth of the fetal kidney. Ultrasonographic measurement of the ratio of average kidney diameter to biparietal diameter. J Reprod Med 30:485–488

    CAS  PubMed  Google Scholar 

  3. Gloor JM, Breckle RJ, Gehrking WC, Rosenquist RG, Mulholland TA, Bergstralh EJ, Ramin KD, Ogburn PL Jr (1997) Fetal renal growth evaluated by prenatal ultrasound examination. Mayo Clin Proc 72:124–129

    CAS  PubMed  Google Scholar 

  4. Pruggmayer M, Terinde R (1989) Fetal kidney screening: growth curves and indices. Geburtshilfe Frauenheilkd 49:705–710

    CAS  PubMed  Google Scholar 

  5. Kennedy WA, Chitkara U, Abidari JM, Shortliffe LM (2003) Fetal renal growth as assessed through renal parenchymal area derived from prenatal and perinatal ultrasonography. J Urol 169:298–302

    PubMed  Google Scholar 

  6. Jelen Z (1993) The value of ultrasonography as a screening procedure of the neonatal urinary tract: a survey of 1021 infants. Int Urol Nephrol 25:3–10

    CAS  PubMed  Google Scholar 

  7. Schlesinger AE, Hedlund GL, Pierson WP, Null DM (1987) Normal standards for kidney length in premature infants: determination with US. Work in progress. Radiology 164:127–129

    CAS  PubMed  Google Scholar 

  8. Chiara A, Chirico G, Barbarini M, De Vecchi E, Rondini G (1989) Ultrasonic evaluation of kidney length in term and preterm infants. Eur J Pediatr 149:94–95

    CAS  PubMed  Google Scholar 

  9. Scott JE, Hunter EW, Lee RE, Matthews JN (1990) Ultrasound measurement of renal size in newborn infants. Arch Dis Child 65:361–364

    CAS  PubMed  Google Scholar 

  10. Schmidt IM, Chellakooty M, Haavisto AM, Boisen KA, Damgaard IN, Steendahl U, Toppari J, Skakkebaek NE, Main KM (2002) Gender difference in breast tissue size in infancy: correlation with serum estradiol. Pediatr Res 52:682–686

    Article  CAS  PubMed  Google Scholar 

  11. Chellakooty M, Schmidt IM, Haavisto AM, Boisen KA, Damgaard IN, Mau C, Petersen JH, Juul A, Skakkebaek NE, Main KM (2003) Inhibin A, inhibin B, follicle-stimulating hormone (FSH), lutenizing hormone (LH), estradiol and sex hormone-binding globulin (SHBG) levels in 473 healthy infant girls. J Clin Endocrinol Metab 88:3515–3520

    Article  CAS  PubMed  Google Scholar 

  12. Boisen KA, Kaleva M, Main KM, Virtanen HE, Haavisto AM, Schmidt IM, Chellakooty M, Damgaard IN, Mau C, Reunanen M, Skakkebaek NE, Toppari J (2004) Remarkable differences in the prevalence of congenital cryprorchidism in infants between two Nordic countries. Lancet 363:1264–1269

    Article  CAS  PubMed  Google Scholar 

  13. Marsal K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B (1996) Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr 85:843–848

    CAS  PubMed  Google Scholar 

  14. Larsen T (2001) Intrauterine growth restriction—identification, correlation and causation evaluated by use of ultrasound. Dan Med Bull 48:256–274

    CAS  PubMed  Google Scholar 

  15. Du Bois D, Du Bois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    CAS  Google Scholar 

  16. Zenkl M, Egghart G, Muller M (1990) The normal kidney size in children. An ultrasound study. Urologe A 29:32–38

    CAS  PubMed  Google Scholar 

  17. Simonoff JS (ed) (1996) Smoothing methods in statistics. Springer-Verlag, New York Berlin Heidelberg

  18. Emamian SA, Nielsen MB, Pedersen JF, Ytte L (1993) Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. AJR 160:83–86

    CAS  PubMed  Google Scholar 

  19. Oudar O, Elger M, Bankir L, Ganten D, Ganten U, Kriz W (1991) Differences in rat kidney morphology between males, females and testosterone-treated females. Ren Physiol Biochem 14:92–102

    CAS  PubMed  Google Scholar 

  20. Berger FG, Watson G (1989) Androgen-regulated gene expression. Annu Rev Physiol 51:51–65

    Article  CAS  PubMed  Google Scholar 

  21. Asadi FK, Dimaculangan DD, Berger FG (1994) Androgen regulation of gene expression in primary epithelial cells of the mouse kidney. Endocrinology 134:1179–1187

    Article  CAS  PubMed  Google Scholar 

  22. Stefani S, Aguiari GL, Bozza A, Maestri I, Magri E, Cavazzini P, Piva R, Senno L del (1994) Androgen responsiveness and androgen receptor gene expression in human kidney cells in continuous culture. Biochem Mol Biol Int 32:597–604

    CAS  PubMed  Google Scholar 

  23. Wilson JD, Griffin JE, Leshin M, George FW (1981) Role of gonadal hormones in development of the sexual phenotypes. Hum Genet 58:78–84

    CAS  PubMed  Google Scholar 

  24. Forest MG, Peretti E de, Lecoq A, Cadillon E, Zabot MT, Thoulon JM (1980) Concentration of 14 steroid hormones in human amniotic fluid of midpregnancy. J Clin Endocrinol Metab 51:816–822

    CAS  PubMed  Google Scholar 

  25. Andersson AM, Toppari J, Haavisto AM, Petersen JH, Simell T, Simell O, Skakkebaek NE (1998) Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J Clin Endocrinol Metab 83:675–681

    Article  CAS  PubMed  Google Scholar 

  26. Han BK, Babcock DS (1985) Sonographic measurements and appearance of normal kidneys in children. AJR 145:611–616

    CAS  PubMed  Google Scholar 

  27. Haugstvedt S, Lundberg J (1980) Kidney size in normal children measured by sonography. Scand J Urol Nephrol 14:251–255

    CAS  PubMed  Google Scholar 

  28. Dremsek PA, Kritscher H, Bohm G, Hochberger O (1987) Kidney dimensions in ultrasound compared to somatometric parameters in normal children. Pediatr Radiol 17:285–290

    CAS  PubMed  Google Scholar 

  29. Konus OL, Ozdemir A, Akkaya A, Erbas G, Celik H, Isik S (1998) Normal liver, spleen, and kidney dimensions in neonates, infants, and children: evaluation with sonography. AJR 171:1693–1698

    CAS  Google Scholar 

  30. Loftus WK, Gent RJ, LeQuesne GW, Metreweli C (1998) Renal length in Chinese children: sonographic measurement and comparison with western data. J Clin Ultrasound 26:349–352

    Article  CAS  PubMed  Google Scholar 

  31. Dinkel E, Ertel M, Dittrich M, Peters H, Berres M, Schulte Wissermann H (1985) Kidney size in childhood. Sonographical growth charts for kidney length and volume. Pediatr Radiol 15:38–43

    CAS  PubMed  Google Scholar 

  32. Christophe C, Cantraine F, Bogaert C, Coussement C, Hanquinet S, Spehl M, Perlmutter N (1986) Ultrasound: a method for kidney size monitoring in children. Eur J Pediatr 145:532–538

    CAS  PubMed  Google Scholar 

  33. Schmidt IM, Mølgaard C, Main KM, Michaelsen KF (2001) Effect of gender and lean body mass on kidney size in healthy 10-year-old children. Pediatr Nephrol 16:366–370

    Article  CAS  PubMed  Google Scholar 

  34. Morrison EY, Alleyne GA (1976) Malnutrition, kidney size and composition. Arch Latinoam Nutr 26:7–14

    CAS  PubMed  Google Scholar 

  35. Kasiske BL, Umen AJ (1986) The influence of age, sex, race, and body habitus on kidney weight in humans. Arch Pathol Lab Med 110:55–60

    CAS  PubMed  Google Scholar 

  36. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  37. Haddad-Zebouni S, Hindy R, Slaba S, Aoun N, Mourani C, Abi GS, Atallah N (1999) Ultrasonographic evaluation of the kidney, liver and spleen size in children. Arch Pediatr 6:1266–1270

    Article  CAS  PubMed  Google Scholar 

  38. Brangenberg R, Burger A, Romer U, Kozlik-Feldmann R, Netz H (2002) Echocardiographic assessment of left ventricular size and function in normal children from infancy to adolescence: acoustic quantification in comparison with traditional echocardiographic techniques. Pediatr Cardiol 23:394–402

    Article  CAS  PubMed  Google Scholar 

  39. Hauffa BP, Menzel D, Stolecke H (1988) Age-related changes in adrenal size during the first year of life in normal newborns, infants and patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: comparison of ultrasound and hormonal parameters. Eur J Pediatr 148:43–49

    CAS  PubMed  Google Scholar 

  40. Talbot FB, Wilson EB, Worcester J (1937) Basal metabolism of girls: physiologic background and application of standards. Am J Dis Child 53:273–347

    CAS  Google Scholar 

  41. Lewis RC, Kinsman GM, Iliff A (1937) The basal metabolism of normal boys and girls from two to twelve years old, inclusive. Am J Dis Child 53:348–428

    CAS  Google Scholar 

  42. Talbot FB (1938) Basal metabolism standards for children. Am J Dis Child 55:455–459

    Google Scholar 

  43. Robertson JD, Reid DD (1952) Standards for the basal metabolism of normal people in Britain. Lancet 262:940–943

    Article  Google Scholar 

  44. Kurtin PS (1988) Standardization of renal function measurements in children: kidney size versus metabolic rate. Child Nephrol Urol 9:337–339

    PubMed  Google Scholar 

  45. Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93:62–66

    Google Scholar 

  46. Karlberg J (1989) A biologically-oriented mathematical model (ICP) for human growth. Acta Paediatr Scand [Suppl] 350:70–94

    Google Scholar 

  47. Karlberg J, Albertsson-Wikland K (1988) Infancy growth pattern related to growth hormone deficiency. Acta Paediatr Scand 77:385–391

    CAS  PubMed  Google Scholar 

  48. Hirschberg R, Adler S (1998) Insulin-like growth factor system and the kidney: physiology, pathophysiology, and therapeutic implications. Am J Kidney Dis 31:901–919

    CAS  PubMed  Google Scholar 

  49. Holloway H, Jones TB, Robinson AE, Harpen MD, Wiseman HJ (1983) Sonographic determination of renal volumes in normal neonates. Pediatr Radiol 13:212–214

    CAS  PubMed  Google Scholar 

  50. Fitzsimons RB (1983) Kidney length in the newborn measured by ultrasound. Acta Paediatr Scand 72:885–887

    CAS  PubMed  Google Scholar 

  51. Carrico CWT, Zerin JM (1996) Sonographic measurement of renal length in children: does the position of the patient matter? Pediatr Radiol 26:553–555

    CAS  PubMed  Google Scholar 

  52. De Sanctis JT, Connolly SA, Bramson RT (1998) Effect of patient position on sonographically measured renal length in neonates, infants, and children. AJR 170:1381–1383

    PubMed  Google Scholar 

  53. Sargent MA, Wilson BP (1992) Observer variability in the sonographic measurement of renal length in childhood. Clin Radiol 46:344–347

    CAS  PubMed  Google Scholar 

  54. Ablett MJ, Coulthard A, Lee RE, Richardson DL, Bellas T, Owen JP, Keir MJ, Butler TJ (1995) How reliable are ultrasound measurements of renal length in adults? Br J Radiol 68:1087–1089

    CAS  PubMed  Google Scholar 

  55. Emamian SA, Nielsen MB, Pedersen JF (1995) Intraobserver and interobserver variations in sonographic measurements of kidney size in adult volunteers. A comparison of linear measurements and volumetric estimates. Acta Radiol 36:399–401

    CAS  PubMed  Google Scholar 

  56. Sargent MA, Long G, Karmali M, Cheng SM (1997) Interobserver variation in the sonographic estimation of renal volume in children. Pediatr Radiol 27:663–666

    Article  CAS  PubMed  Google Scholar 

  57. Rosenbaum DM, Korngold E, Teele RL (1984) Sonographic assessment of renal length in normal children. AJR 142:467–469

    CAS  Google Scholar 

  58. Troell S, Berg U, Johansson B, Wikstad I (1988) Renal parenchymal volume in children. Normal values assessed by ultrasonography. Acta Radiol 29:127–130

    CAS  PubMed  Google Scholar 

  59. Mesrobian HG, Laud PW, Todd E, Gregg DC (1998) The normal kidney growth rate during year 1 of life is variable and age dependent. J Urol 160:989–993

    Article  CAS  PubMed  Google Scholar 

  60. Chen JJ, Pugach J, Patel M, Luisiri A, Steinhardt GF (2002) The renal length nomogram: multivariable approach. J Urol 168:2149–2152

    Article  PubMed  Google Scholar 

  61. Peters H, Weitzel D, Humburg C, Dinkel E, Blum M (1986) Sonographic determination of the normal kidney volume in newborn infants and infants. Ultraschall Med 7:25–29

    CAS  PubMed  Google Scholar 

  62. Singer MA (2001) Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am J Kidney Dis 37:164–178

    CAS  PubMed  Google Scholar 

  63. Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    CAS  PubMed  Google Scholar 

  64. Troell S, Berg U, Johansson B, Wikstad I (1988) Comparison between renal parenchymal sonographic volume, renal parenchymal urographic area, glomerular filtration rate and renal plasma flow in children. Scand J Urol Nephrol 22:207–214

    CAS  PubMed  Google Scholar 

  65. Mogensen CE, Andersen MJ (1973) Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22:706–712

    Google Scholar 

  66. Wirta O, Pasternack A, Laippala P, Turjanmaa V (1996) Glomerular filtration rate and kidney size after six years disease duration in non-insulin-dependent diabetic subjects. Clin Nephrol 45:10–17

    CAS  PubMed  Google Scholar 

  67. Christensen T, Klebe JG, Bertelsen V, Hansen HE (1989) Changes in renal volume during normal pregnancy. Acta Obstet Gynecol Scand 68:541–543

    CAS  PubMed  Google Scholar 

  68. Ladefoged J, Pedersen F (1968) Relationship between roentgenological size of the kidney and the kidney function. J Urol 99:239–240

    CAS  PubMed  Google Scholar 

  69. Erwin BC, Carroll BA, Muller H (1985) A sonographic assessment of neonatal renal parameters. J Ultrasound Med 4:217–220

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the participating families and to the staff of the Obstetric Departments of the University Hospital of Copenhagen for excellent co-operation, and we appreciate the skilled help of our assisting nurses and students. The present study was supported by the Danish Research Council (no. 9700833), Research Foundation of The Copenhagen Hospital Corporation (no. 109/00), The Copenhagen Hospital Corporation (no. 134), European Commission (no. QLK4–1999–01422 and QLRT-2001–00269), and the Ville Heise Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida M. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, I.M., Main, K.M., Damgaard, I.N. et al. Kidney growth in 717 healthy children aged 0–18 months: a longitudinal cohort study. Pediatr Nephrol 19, 992–1003 (2004). https://doi.org/10.1007/s00467-004-1479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1479-z

Keywords

Navigation