Abstract
Familial hypophosphatemic rickets (XLH) is caused by inactivating mutations of the cell surface metalloproteinase PHEX. It is characterized by low-normal serum levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], normocalcemia, and hypophosphatemia. Hyperparathyroidism is regularly seen in patients treated with phosphate supplements, although circulating serum phosphate levels do not reach the normal range. The mechanism is unknown. Decreased serum concentrations of ionized calcium following phosphate supplements might contribute to the development of hyperparathyroidism. Secondary and even tertiary hyperparathyroidism can, however, be observed in patients who have never received phosphate treatment. This points to an abnormal regulation of production and/or degradation of parathyroid hormone (PTH). Recently, the expression of the PHEX gene in hypertrophied parathyroid glands of a patient with XLH has been reported. It is unclear whether the mutant PHEX gene can induce hyperparathyroidism by abnormal regulation of peptidases.
References
The HYP Consortium (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 11:130–136
Guo R, Quarles LD (1997) Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res 12:1009–1017
Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981
Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD (2003) Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 278:37419–37426
Insogna KL, Broadus AE, Gertner JM (1983) Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest 71:1562–1569
Azam N, Zhang MY, Wang X, Tenenhouse HS, Portale AA (2003) Disordered regulation of renal 25-hydroxyvitamin D-1alpha-hydroxylase gene expression by phosphorus in X-linked hypophosphatemic (hyp) mice. Endocrinology 144:3463–3468
Glorieux FH, Scriver CR, Reade TM, Goldman H, Roseborough A (1972) Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. N Engl J Med 287:481–487
Krohn HP, Offermann G, Brandis M, Brodehl J, Hanke K, Offner G (1997) Occurrence of hyperparathyroidism in children with X-linked hypophosphatemia under treatment with vitamin D and phosphate. Adv Exp Med Biol 81:345–351
Albright F, Butler AM, Bloomberg E (1937) Rickets resistant to vitamin D therapy. Am J Dis Child 54:529–547
Thomas WC Jr, Fry RM (1970). Parathyroid adenomas in chronic rickets. Am J Med 49:404–407
Alon U, Newsome H Jr, Chan JC (1984) Hyperparathyroidism in patients with X-linked dominant hypophosphatemic rickets—application of the calcium infusion test as an indicator for parathyroidectomy. Int J Pediatr Nephrol 5:39–43
Firth RG, Grant CS, Riggs BL (1985) Development of hypercalcemic hyperparathyroidism after long-term phosphate supplementation in hypophosphatemic osteomalacia. Report of two cases. Am J Med 78:669–673
Rivkees SA, el-Hajj-Fuleihan G, Brown EM, Crawford JD (1992) Tertiary hyperparathyroidism during high phosphate therapy of familial hypophosphatemic rickets. J Clin Endocrinol Metab 75:1514–1518
Knudtzon J, Halse J, Monn E, Nesland A, Nordal KP, Paus P, Seip M, Sund S, Sodal G (1995) Autonomous hyperparathyroidism in X-linked hypophosphataemia. Clin Endocrinol (Oxf) 42:199–203
Narvaez J, Rodriguez-Moreno J, Moragues C, Campoy E, Clavaguera T, Roig-Escofet D (1996) Tertiary hyperparathyroidism after long-term phosphate supplementation in adult-onset hypophosphataemic osteomalacia. Br J Rheumatol 35:598–600
Wu CJ, Song YM, Sheu WH (2000) Tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Intern Med 39:468–471
Makitie O, Kooh SW, Sochett E (2003) Prolonged high-dose phosphate treatment: a risk factor for tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Clin Endocrinol (Oxf) 58:163–168
Sullivan W, Carpenter T, Glorieux F, Travers R, Insogna K (1992) A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 75:879–885
Verge CF, Lam A, Simpson JM, Cowell CT, Howard NJ, Silink M (1991) Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med 325:1843–1848
Alon US, Monzavi R, Lilien M, Rasoulpour M, Geffner ME, Yadin O (2003) Hypertension in hypophosphatemic rickets—role of secondary hyperparathyroidism. Pediatr Nephrol 18:155–158
Nehgme R, Fahey JT, Smith C, Carpenter TO (1997) Cardiovascular abnormalities in patients with X-linked hypophosphatemia. J Clin Endocrinol Metab 82:2450–2454
Moltz KC, Friedman AH, Nehgme RA, Kleinman CS, Carpenter TO (2001) Ectopic cardiac calcification associated with hyperparathyroidism in a boy with hypophosphatemic rickets. Curr Opin Pediatr 13:373–375
Brown EM (2000) Calcium receptor and regulation of parathyroid hormone secretion. Rev Endocr Metab Disord 1:307–315
Mayer GP, Keaton JA, Hurst JG, Habener JF (1979) Effects of plasma calcium concentration on the relative proportion of hormone and carboxyl fragments in parathyroid venous blood. Endocrinology 104:1778–1784
Kifor O, Moore FD Jr, Wang P, Goldstein M, Vassilev P, Kifor I, Hebert SC, Brown EM (1996) Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab 81:1598–1606
Brown AJ, Zhong M, Ritter C, Brown EM, Slatopolsky E (1995) Loss of calcium responsiveness in cultured bovine parathyroid cells is associated with decreased calcium receptor expression. Biochem Biophys Res Commun 212:861–867
Nielsen PK, Feldt-Rasmussen U, Olgaard K (1996) A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant. 11:1762–1768
Silver J, Kilav R, Naveh-Many T (2002) Mechanisms of secondary hyperparathyroidism. Am J Physiol Renal Physiol 283:F367–F376
Moallem E, Kilav R, Silver J, Naveh-Many T (1998) RNA-protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem 273:5253–5259
Silver J, Naveh-Many T, Mayer H, Schmelzer HJ, Popovtzer MM (1986) Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest 78:1296–1301
Naveh-Many T, Rahamimov R, Livni N, Silver J (1995) Parathyroid cell proliferation in normal and chronic renal failure rats. The effects of calcium, phosphate, and vitamin D. J Clin Invest 96:1786–1793
Cozzolino M, Lu Y, Finch J, Slatopolsky E, Dusso AS (2001) p21WAF1 and TGF-alpha mediate parathyroid growth arrest by vitamin D and high calcium. Kidney Int 60:2109–2117
Drueke TB (2000) Cell biology of parathyroid gland hyperplasia in chronic renal failure. J Am Soc Nephrol 11:1141–1152
Hsi ED, Zukerberg LR, Yang WI, Arnold A (1996) Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab 81:1736–1739
Heppner C, Kester MB, Agarwal SK, Debelenko LV, Emmert-Buck MR, Guru SC, Manickam P, Olufemi SE, Skarulis MC, Doppman JL, Alexander RH, Kim YS, Saggar SK, Lubensky IA, Zhuang Z, Liotta LA, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL, Marx SJ (1997) Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet 16:375–378
Palanisamy N, Imanishi Y, Rao PH, Tahara H, Chaganti RS, Arnold A (1998) Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab 83:1766–1770
Imanishi Y, Tahara H, Palanisamy N, Spitalny S, Salusky IB, Goodman W, Brandi ML, Drueke TB, Sarfati E, Urena P, Chaganti RS, Arnold A (2002) Clonal chromosomal defects in the molecular pathogenesis of refractory hyperparathyroidism of uremia. J Am Soc Nephrol 13:1490–1498
Tominaga Y, Tsuzuki T, Uchida K, Haba T, Otsuka S, Ichimori T, Yamada K, Numano M, Tanaka Y, Takagi H (1999) Expression of PRAD1/cyclin D1, retinoblastoma gene products, and Ki67 in parathyroid hyperplasia caused by chronic renal failure versus primary adenoma. Kidney Int 55:1375–1383
Carpenter TO, Mitnick MA, Ellison A, Smith C, Insogna KL (1994) Nocturnal hyperparathyroidism: a frequent feature of X-linked hypophosphatemia. J Clin Endocrinol Metab 78:1378–1383
Adler AJ, Ferran N, Berlyne GM (1985) Effect of inorganic phosphate on serum ionized calcium concentration in vitro: a reassessment of the “trade-off hypothesis”. Kidney Int 28:932–935
Ritz E, Malluche HH, Krempien B, Tschope W, Massry SG (1978) Pathogenesis of renal osteodystrophy: roles of phosphate and skeletal resistance to PTH. Adv Exp Med Biol 103:423–436
Sato K, Obara T, Yamazaki K, Kanbe M, Nakajima K, Yamada A, Yanagisawa T, Kato Y, Nishikawa T, Takano K (2001) Somatic mutations of the MEN1 gene and microsatellite instability in a case of tertiary hyperparathyroidism occurring during high phosphate therapy for acquired, hypophosphatemic osteomalacia. J Clin Endocrinol Metab 86:5564–5571
Blydt-Hansen TD, Tenenhouse HS, Goodyer P (1999) PHEX expression in parathyroid gland and parathyroid hormone dysregulation in X-linked hypophosphatemia. Pediatr Nephrol 13:607–611
Kiebzak GM, Roos BA, Meyer RA Jr (1982) Secondary hyperparathyroidism in X-linked hypophosphatemic mice. Endocrinology 111:650–652
Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S (2002) Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957–4960
Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663
Quarles LD (2003) FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 285:E1–9
Guo R, Liu S, Spurney RF, Quarles LD (2001) Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am J Physiol Endocrinol Metab 281:E837–E847
Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N (2003) Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 278:2206–2211
Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2002) Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179–3182
Bai XY, Miao D, Goltzman D, Karaplis AC (2003) The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 278:9843–9849
Smith R, Newman RJ, Radda GK, Stokes M, Young A (1984) Hypophosphataemic osteomalacia and myopathy: studies with nuclear magnetic resonance spectroscopy. Clin Sci (Lond) 67:505–509
Latta K, Hisano S, Chan JC (1993) Therapeutics of X-linked hypophosphatemic rickets. Pediatr Nephrol 7:744–748
Reusz GS (1995) Guide-lines to the treatment of patients with X-linked hypophosphatemic rickets. Acta Biomed Ateneo Parmense 66:147–151
Seikaly MG, Baum M (2001) Thiazide diuretics arrest the progression of nephrocalcinosis in children with X-linked hypophosphatemia. Pediatrics 108:E6
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmitt, C.P., Mehls, O. The enigma of hyperparathyroidism in hypophosphatemic rickets. Pediatr Nephrol 19, 473–477 (2004). https://doi.org/10.1007/s00467-004-1443-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00467-004-1443-y