Skip to main content
Log in

Parathyroid hormone and its fragments in children with chronic renal failure

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Parathyroid hormone (PTH) immunoradiometric assays (IRMA) exhibit cross-reactivity between 1-84 PTH and long carboxyl-terminal-PTH (C-PTH) molecules. C-PTH antagonizes the biological actions of 1-84 PTH and circulates in excess in chronic renal failure (CRF), partially explaining why supra-physiological PTH levels are recommended to maintain bone turnover. Furthermore, the ratio 1-84 PTH/C-PTH may be related to bone turnover. This study characterizes the 1-84 PTH/C-PTH ratio in children with varying severity of CRF and levels of PTH. Two hundred and forty-one children with CRF, managed with the aim of preventing the development of hyperparathyroidism, had PTH measured by ‘intact’ IRMA and a new more specific Cyclase-Activating-PTH (CAP) IRMA. C-PTH levels were calculated by subtracting CAP-IRMA from ‘intact’ IRMA. Fifty-three controls with normal renal function were also recruited. Mean ‘intact’ IRMA correlated with CAP-IRMA (r=0.98), but was higher (P<0.001). The mean 1-84 PTH/C-PTH ratio was lower than controls in dialysis patients (P=0.022) and those with a glomerular filtration rate <30 ml/min per m2 (P=0.033). This ratio was comparable to controls when the PTH level was normal, but was lower with PTH levels outside the normal range (P<0.01). These data suggest that CAP-IRMA gives a more accurate assessment of actual PTH levels than ‘intact’ IRMA in CRF. Maintenance of normal PTH levels throughout the course of CRF permits the maintenance of a normal 1-84 PTH/C-PTH ratio, the clinical significance of which requires further investigation in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Malluche HH, Ritz E, Lange HP Kutschera L, Hodgson M, Seiffert U, Schoeppe W (1976) Bone histology in incipient and advanced renal failure. Kidney Int 9:355–362

    CAS  PubMed  Google Scholar 

  2. Slatopolsky E, Brown A, Dusso A (1999) Pathogenesis of secondary hyperparathyroidism. Kidney Int [Suppl] 73:S14–S19

    Google Scholar 

  3. Coburn JW, Elangovan L (1998) Prevention of metabolic bone disease in the pre-end-stage renal disease setting. J Am Soc Nephrol 9 [Suppl]:S71–S77

  4. Sanchez CP (2001) Prevention and treatment of renal osteodystrophy in children with chronic renal insufficiency and end-stage renal disease. Semin Nephrol 21:441–450

    Article  CAS  PubMed  Google Scholar 

  5. Hutchison AJ, Whitehouse RW, Boulton HF Adams JE, Mawer EB, Freemont TJ, Gokal R (1993) Correlation of bone histology with parathyroid hormone, vitamin D3, and radiology in end-stage renal disease. Kidney Int 44:1071–1077

    CAS  PubMed  Google Scholar 

  6. Torres A, Lorenzo V, Hernandez D, Rodriguez JC, Concepcion MT, Rodriguez AP, Hernandez A, Bonis E de, Darias E, Gonzalez-Posada JM (1995) Bone disease in predialysis, hemodialysis, and CAPD patients: evidence of a better bone response to PTH. Kidney Int 47:1434–1442

    CAS  PubMed  Google Scholar 

  7. Coen G, Ballanti P, Bonucci E, Calabria S, Centorrino M, Fassino V, Manni M, Mantella D, Mazzaferro S, Napoletano I, Sardella D, Taggi F (1998) Bone markers in the diagnosis of low turnover osteodystrophy in haemodialysis patients. Nephrol Dial Transplant 13:2294–2302

    Article  CAS  PubMed  Google Scholar 

  8. Salusky IB, Coburn JW, Brill J, Foley J, Slatopolsky E, Fine RN, Goodman WG (1988) Bone disease in pediatric patients undergoing dialysis with CAPD or CCPD. Kidney Int 33:975–982

    CAS  PubMed  Google Scholar 

  9. Llach F, Massry SG, Singer FR, Kurokawa K, Kaye JH, Coburn JW (1975) Skeletal resistance to endogenous parathyroid hormone in patients with early renal failure. A possible cause for secondary hyperparathyroidism. J Clin Endocrinol Metab 41:339–345

    CAS  PubMed  Google Scholar 

  10. Nguyen-Yamamoto L, Rousseau L, Brossard JH, Lepage R, D’Amour P (2001) Synthetic carboxyl-terminal fragments of parathyroid hormone (PTH) decrease ionized calcium concentration in rats by acting on a receptor different from the PTH/PTH-related peptide receptor. Endocrinology 142:1386–1392

    CAS  PubMed  Google Scholar 

  11. Slatopolsky E, Finch J, Clay P, Martin D, Sicard G, Singer G, Gao P, Cantor T, Dusso A (2000) A novel mechanism for skeletal resistance in uremia. Kidney Int 58:753–761

    CAS  PubMed  Google Scholar 

  12. Lepage R, Roy L, Brossard JH, Rousseau L, Dorais C, Lazure C, D’Amour P (1998) A non-(1-84) circulating parathyroid hormone (PTH) fragment interferes significantly with intact PTH commercial assay measurements in uremic samples. Clin Chem 44:805–809

    CAS  PubMed  Google Scholar 

  13. Inomata N, Akiyama M, Kubota N, Juppner H (1995) Characterization of a novel parathyroid hormone (PTH) receptor with specificity for the carboxyl-terminal region of PTH-(1-84). Endocrinology 136:4732–4740

    CAS  PubMed  Google Scholar 

  14. Divieti P, Inomata N, Chapin K, Singh R, Juppner H, Bringhurst FR (2001) Receptors for the carboxyl-terminal region of pth(1-84) are highly expressed in osteocytic cells. Endocrinology 142:916–925

    CAS  PubMed  Google Scholar 

  15. Divieti P, John MR, Juppner H, Bringhurst FR (2002) Human PTH-(7-84) inhibits bone resorption in vitro via actions independent of the type 1 PTH/PTHrP receptor. Endocrinology 143:171–176

    CAS  PubMed  Google Scholar 

  16. Brossard JH, Lepage R, Cardinal H, Roy L, Rousseau L, Dorais C, D’Amour P (2000) Influence of glomerular filtration rate on non-(1-84) parathyroid hormone (PTH) detected by intact PTH assays. Clin Chem 46:697–703

    CAS  PubMed  Google Scholar 

  17. Gao P, Scheibel S, D’Amour P, John MR, Rao SD, Schmidt-Gayk H, Cantor TL (2001) Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1-84: implications for improvement of accurate assessment of parathyroid function. J Bone Miner Res 16:605–614

    CAS  PubMed  Google Scholar 

  18. John MR, Goodman WG, Gao P, Cantor TL, Salusky IB, Juppner H (1999) A novel immunoradiometric assay detects full-length human PTH but not amino-terminally truncated fragments: implications for PTH measurements in renal failure. J Clin Endocrinol Metab 84:4287–4290

    CAS  PubMed  Google Scholar 

  19. Monier-Faugere MC, Geng Z, Mawad H, Friedler RM, Gao P, Cantor TL, Malluche HH (2001) Improved assessment of bone turnover by the PTH-(1-84)/large C-PTH fragments ratio in ESRD patients. Kidney Int 60:1460–1468

    Article  CAS  PubMed  Google Scholar 

  20. Coen G, Bonucci E, Ballanti P, Balducci A, Calabria S, Nicolai GA, Fischer MS, Lifrieri F, Manni M, Morosetti M, Moscaritolo E, Sardella D (2002) PTH 1-84 and PTH “7-84” in the noninvasive diagnosis of renal bone disease. Am J Kidney Dis 40:348–354

    Article  CAS  PubMed  Google Scholar 

  21. Salusky IB, Goodman WG (1996) The management of renal osteodystrophy. Pediatr Nephrol 10:651–653

    Article  CAS  PubMed  Google Scholar 

  22. Rigden SP (1996) The treatment of renal osteodystrophy. Pediatr Nephrol 10:653–655

    Article  CAS  PubMed  Google Scholar 

  23. Rostand SG, Drueke TB (1999) Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure. Kidney Int 56:383–392

    Article  CAS  PubMed  Google Scholar 

  24. Barenbrock M, Hausberg M, Kosch M, Kisters K, Hoeks AP, Rahn KH (1998) Effect of hyperparathyroidism on arterial distensibility in renal transplant recipients. Kidney Int 54:210–215

    Article  CAS  PubMed  Google Scholar 

  25. Standards Subcommittee of the Renal Association (2002) Treatment of adults and children with renal failure; standards and audit measures, 3rd edn. Royal College of Physicians of London, London, p 66

  26. Salusky IB, Ramirez JA, Oppenheim W, Gales B, Segre GV, Goodman WG (1994) Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int 45:253–258

    CAS  PubMed  Google Scholar 

  27. Kuizon BD, Goodman WG, Juppner H, Boechat I, Nelson P, Gales B, Salusky IB (1998) Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD. Kidney Int 53:205–211

    CAS  PubMed  Google Scholar 

  28. Ziolkowska H, Paniczyk-Tomaszewska M, Debinski A, Polowiec Z, Sawicki A, Sieniawska M (2000) Bone biopsy results and serum bone turnover parameters in uremic children. Acta Paediatr 89:666–671

    Article  CAS  PubMed  Google Scholar 

  29. Salomon R, Charbit M, Gagnadoux MF, Niaudet P, Gao P, Cantor T, Souberbielle JC (2001) High serum levels of a non-(1-84) parathyroid hormone (PTH) fragment in pediatric haemodialysis patients. Pediatr Nephrol 16:1011–1014

    Article  CAS  PubMed  Google Scholar 

  30. Gao P, Fulla Y, Scheibel S, Vuillemard C, Cantor T (200) Recognition of the PTH (7-84) fragment by 5 commercial PTH ‘sandwich’ assays (abstract). J Bone Miner Res 15 [Suppl 1]:S564

  31. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    CAS  PubMed  Google Scholar 

  32. Brossard JH, Cloutier M, Roy L, Lepage R, Gascon-Barre M, D’Amour P (1996) Accumulation of a non-(1-84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: importance in the interpretation of PTH values. J Clin Endocrinol Metab 81:3923–3929

    CAS  PubMed  Google Scholar 

  33. Nguyen-Yamamoto L, Rousseau L, Brossard JH, Lepage R, Gao P, Cantor T, D’Amour P (2002) Origin of parathyroid hormone (PTH) fragments detected by intact-PTH assays. Eur J Endocrinol 147:123–131

    CAS  PubMed  Google Scholar 

  34. Bro S, Olgaard K (1997) Effects of excess PTH on nonclassical target organs. Am J Kidney Dis 30:606–620

    CAS  PubMed  Google Scholar 

  35. De Boer IH, Gorodetskaya I, Young B, Hsu CY, Chertow GM (2002) The severity of secondary hyperparathyroidism in chronic renal insufficiency is GFR-dependent, race-dependent, and associated with cardiovascular disease. J Am Soc Nephrol 13:2762–2769

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Kidney Research Fund (R 18/2/2001), Renal Care and Research Association, and the Special Trustees of Great Ormond Street Hospital. Scantibodies Laboratory performed all the PTH assays. The work was presented at the 36th annual meeting of the ESPN (2002), Pediatr Nephrol 17:C27-C148. The authors would like to thank Dr. A. Rosenberg for his comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Waller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waller, S., Reynolds, A., Ridout, D. et al. Parathyroid hormone and its fragments in children with chronic renal failure. Pediatr Nephrol 18, 1242–1248 (2003). https://doi.org/10.1007/s00467-003-1267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1267-1

Keywords

Navigation