Skip to main content

Advertisement

Log in

ACE inhibition modulates transforming growth factor-β receptors in the young rat

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The renin-angiotensin system plays an important role in renal growth and development. Exposure of the neonate to angiotensin converting enzyme (ACE) inhibitors increases mortality and results in growth retardation and abnormal renal development. It has been demonstrated that ACE inhibition in the developing kidney reduces the renal expression of growth factors, which may account for renal growth impairment. This study was designed to investigate the relationship between renal growth impairment and the expression of transforming growth factor-β1 (TGF-β1), TGF-β receptor I [TβRI, activin-like kinase (ALK)-1 and ALK-5], and TGF-β receptor II (TβRII). Newborn rat pups were treated with enalapril (30 mg/kg per day) or vehicle for 7 days, and kidneys were removed for Western blotting of TGF-β1, ALK-1, ALK-5, and TβRII, and for RT-PCR of ALK-5 and TβRII. TGF-β1, ALK-1, ALK-5, and TβRII were also detected by immunohistochemistry. Enalapril treatment resulted in an increased mortality (30.4%) by day 7, and reduced body weight and kidney weight (P<0.05 versus vehicle). Enalapril decreased renal TGF-β1, ALK-1, and ALK-5 protein expression (P<0.05). Also, enalapril decreased ALK-5 mRNA expression (P<0.05). TβRII expression was not changed by enalapril treatment. These results indicate that ACE inhibition in the developing kidney decreases TGF-β1, ALK-1, and ALK-5 expression, which may account for renal growth impairment. TβRII may not be modulated by ACE inhibition in the developing kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Wolf G (1995) Angiotensin as a renal growth factor. Adv Exp Med Biol 377:225–236

    CAS  PubMed  Google Scholar 

  2. Choi JH, Yoo KH, Cheon HW, Kim KB, Hong YS, Lee JW, Kim SK, Kim CH (2002) Angiotensin converting enzyme inhibition decreases cell turnover in the neonatal rat heart. Pediatr Res 52:325–332

    Article  CAS  PubMed  Google Scholar 

  3. Norman JT (1991) The role of angiotensin II in renal growth. Renal Physiol Biochem 14:175–185

    CAS  PubMed  Google Scholar 

  4. Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257:F850–F858

    CAS  PubMed  Google Scholar 

  5. Yoo KH, Wolstenholme JT, Chevalier RL (1997) Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 42:588–592

    CAS  PubMed  Google Scholar 

  6. Khalil A, Tullus K, Bakhiet M, Burman LG, Jaremko G, Brauner A (2000) Angiotensin II type 1 receptor antagonist (losartan) down-regulates transforming growth factor-beta in experimental acute pyelonephritis. J Urol 164:186–191

    CAS  PubMed  Google Scholar 

  7. Moses HL, Yang EY, Pietenpol JA (1990) TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247

    CAS  PubMed  Google Scholar 

  8. Robert AB, Sporn MB (1991) The transforming growth factor-βs. In: Sporn MB, Robert AB (eds) Peptide growth factors and their receptors. Springer-Verlag, Berlin Heidelberg New York pp 419–472

  9. Basile DP, Hammerman MR (1998) TGF-beta in renal development and renal growth. Miner Electrolyte Metab 24:144–148

    Google Scholar 

  10. Liu A, Dardik A, Ballermann BJ (1999) Neutralizing TGF-beta1 antibody infusion in neonatal rat delays in vivo glomerular capillary formation. Kidney Int 56:1334–1348

    Article  CAS  PubMed  Google Scholar 

  11. Yang SP, Woolf AS, Yuan HT, Scott RJ, Risdon RA, O'Hare MJ, Winyard PJ (2000) Potential biological role of transforming growth factor-beta1 in human congenital kidney malformations. Am J Pathol 157:1633–1647

    CAS  PubMed  Google Scholar 

  12. Massague J (1990) The transforming growth factor-β family. Annu Rev Cell Biol 6:597–641

    PubMed  Google Scholar 

  13. Wrana JL, Attisano L, Cacamo J, Zentella A, Dooby J, Laiho M, Wang X-F, Massague J (1992) TGF-β signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014

    CAS  PubMed  Google Scholar 

  14. Cehn C, Wang X-F, Sun L (1997) Expression of transforming growth factor β type III receptor restores autocrine TGFβ1 activity in human breast cancer MCF-7 cells. J Biol Chem 272:12862–12867

    Article  PubMed  Google Scholar 

  15. Gomez RA, Lynch KR, Chevalier RL, Everett AD, Johns DW, Wilfong N, Peach MJ, Carey RM (1988) Renin and angiotensinogen gene expression and intrarenal distribution during ACE inhibition. Am J Physiol 254:F900–F906

    CAS  PubMed  Google Scholar 

  16. Liu A, Ballermann BJ (1998) TGF-beta type II receptor in rat renal vascular development: localization to juxtaglomerular cells. Kidney Int 53:716–725

    Article  CAS  PubMed  Google Scholar 

  17. Moller JC, Skriver E (1985) Quantitative ultrastructure of human proximal tubules and cortical interstitium in chronic renal disease (hydronephrosis). Virchows Arch A Pathol Anat Histopathol 406:389–406

    CAS  PubMed  Google Scholar 

  18. Tso JY, Sun XH, Kao TH, Reece KS, Wu R (1985) Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res 13:2485–2502

    CAS  PubMed  Google Scholar 

  19. Bassing CH, Yingling JM, Howe DJ, Wang T, He WW, Gustafson ML, Shah P, Donahoe PK, Wang XF (1994) A transforming growth factor beta type I receptor that signals to activate gene expression. Science 263:87–89

    CAS  PubMed  Google Scholar 

  20. Choi ME, Kim EG, Huang Q, Ballermann BJ (1993) Rat mesangial cell hypertrophy in response to transforming growth factor-beta 1. Kidney Int 44:948–958

    CAS  PubMed  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliziing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  22. Gomez RA, Tufro-McReddie A, Norwood VF, Harris M, Pentz ES (1994) Renin-angiotensin system: kidney growth and development. Exp Nephrol 2:130

    CAS  PubMed  Google Scholar 

  23. Pryde PG, Sedman AB, Nugent CE, Barr M (1993) Angiotensin-converting enzyme inhibitor fetopathy. J Am Soc Nephrol 3:1575–1582

    CAS  PubMed  Google Scholar 

  24. Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695

    Article  CAS  PubMed  Google Scholar 

  25. Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 269:F110–F115

    CAS  PubMed  Google Scholar 

  26. Esther RE, Howard TE, Marino EM, Goddard JM, Capecchi MR, Berstein KE (1996) Mice lacking angiotensin converting enzyme have low blood pressure, renal pathology and reduced male fertility. Lab Invest 74:953–965

    CAS  PubMed  Google Scholar 

  27. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimuraa F, Nishimura H, Fogo A, Utsunomiya H, Inagami Y, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760

    CAS  PubMed  Google Scholar 

  28. Yoo KH, Hong YS, Lee JW, Kim SK (1998) Angiotensin II (ANG II) increases fibrosis, apoptosis, and cell proliferation but decreases Bcl-2 expression in rat kidney (abstract). J Am Soc Nephrol 9:492

    Google Scholar 

  29. Yoo KH, Choe J-H, Kim MK, Hong YS, Lee JW, Kim SK (2000) Angiotensin converting enzyme inhibition modulates platelet derived growth factors, receptors and alpha smooth muscle actin expression in the neonatal rat kidney (abstract). J Am Soc Nephrol 11:385

    Google Scholar 

  30. Yoo KH, Thornhill BA, Wolstenholme JT, Chevalier RL (1998) Tissue-specific regulation of growth factors and clusterin by angiotensin II. Am J Hypertens 11:715–722

    Article  CAS  PubMed  Google Scholar 

  31. Yoo KH, Thornhill BA, Chevalier RL (2000) Angiotensin stimulates TGF-beta and clusterin in the hydronephrotic neonatal rat kidney. Am J Physiol 278:R640–R645

    CAS  Google Scholar 

  32. Mariano JM, Montuenga LM, Prentice MA, Cuttitta F, Jakowlew SB (1998) Concurrent and distinct transcription and translation of transforming growth factor-beta type I and type II receptors in rodent embryogenesis. Int J Dev Biol 42:1125–1136

    CAS  PubMed  Google Scholar 

  33. Choi ME, Liu A, Ballermann BJ (1997) Differential expression of transforming growth factor-beta receptors in rat kidney development. Am J Physiol 273:F386–F395

    CAS  PubMed  Google Scholar 

  34. Sankar S, Mahooti-Brooks N, Bensen L, McCarthy TL, Centrella M, Madri JA (1996) Modulation of transforming growth factor β receptor levels on microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 97:1436–1446

    PubMed  Google Scholar 

  35. Chen RH, Ebner R, Derynck R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-β activities. Science 260:1335–1338

    Google Scholar 

  36. Wolf G, Ziyadeh FN, Stahl RA (1999) Angiotensin II stimulates expression of transforming growth factor beta receptor type II in cultured mouse proximal tubular cells. J Mol Med 77:556–564

    Article  CAS  PubMed  Google Scholar 

  37. Guh JY, Yang ML, Yang YL, Chang CC, Chuang LY (1996) Captopril reverses high-glucose-induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-beta receptor protein expressions. J Am Soc Nephrol 7:1207–1215

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee Hwan Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, N.S., Yim, H.E., Bae, I.S. et al. ACE inhibition modulates transforming growth factor-β receptors in the young rat. Pediatr Nephrol 18, 865–871 (2003). https://doi.org/10.1007/s00467-003-1220-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1220-3

Keywords

Navigation