Skip to main content
Log in

Smoothed naturally stabilized RKPM for non-linear explicit dynamics with novel stress gradient update

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A smoothed naturally stabilized conforming nodal integration (S-NSNI) for the reproducing kernel particle method (RKPM) is proposed for non-linear explicit dynamics. The Taylor series expansion of the nodal strains in the solid variational formulation is employed, which introduces stabilization by enriching the energy of the originally underintegrated system. As a result, the higher-order gradients of meshfree shape functions are required, and are approximated by using the gradient smoothing technology. In conjunction with implicit gradients, this results in a formulation devoid of computationally intensive differentiation of meshfree shape functions. In addition, when conforming smoothing domains are employed, the formulation is variationally consistent and converges optimally while passing the patch test. The smoothed framework further alleviates a numerical locking in the original NSNI by avoiding direct differentiation that leads to inaccuracies in stabilization terms. To enhance the nontrivial computation of the required stress gradients or estimates there of, a novel stress re-interpolation methodology is introduced, which is favorable for the implementation of arbitrary constitutive laws such as those in commercial codes, which are often plentiful. The framework is developed for both Lagrangian and semi-Lagrangian RKPM and is applicable to both moderate and extreme deformations. The effectiveness of the proposed methodology is demonstrated by the implementation into the KC-FEMFRE and MEGA codes and applied to several benchmark problems that include elastic, nearly incompressible, and plastic materials, as well as geomaterial modeling using continuum damage mechanics coupled with plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001

    Article  Google Scholar 

  2. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, North Chelmsford

    Google Scholar 

  3. Belytschko T, Chen J-S, Hillman M (2023) Meshfree and particle methods: fundamentals and applications. Wiley, London

    Book  Google Scholar 

  4. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  5. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  Google Scholar 

  6. Jensen PS (1972) Finite difference techniques for variable grids. Comput Struct 2(1–2):17–29

    Article  Google Scholar 

  7. Perrone N, Kao R (1975) A general finite difference method for arbitrary meshes. Comput Struct 5(1):45–57

    Article  MathSciNet  Google Scholar 

  8. Liszka T, Orkisz J (1980) The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput Struct 11(1–2):83–95

    Article  MathSciNet  Google Scholar 

  9. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MathSciNet  Google Scholar 

  10. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Meth Eng 37(2):229–256

    Article  MathSciNet  Google Scholar 

  11. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20(8–9):1081–1106

    Article  MathSciNet  Google Scholar 

  12. Duarte CA, Oden JT (1996) An hp adaptive method using clouds. Comput Methods Appl Mech Eng 139(1–4):237–262

    Article  Google Scholar 

  13. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Meth Eng 40(4):727–758

    Article  MathSciNet  Google Scholar 

  14. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (mlpg) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  Google Scholar 

  15. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  Google Scholar 

  16. Nguyen H, Wang J, Bazilevs Y (2024) A smooth crack-band model for anisotropic materials: continuum theory and computations with the rkpm meshfree method. Int J Solids Struct 288:112618

    Article  Google Scholar 

  17. Guan P, Chi S, Chen J, Slawson T, Roth M (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047

    Article  Google Scholar 

  18. Atif MM, Chi S-W (2023) Concurrent semi-Lagrangian reproducing kernel formulation and stability analysis. Comput Mech 73:873–903

    Article  MathSciNet  Google Scholar 

  19. Dolbow J, Belytschko T (1999) Numerical integration of the galerkin weak form in meshfree methods. Comput Mech 23(3):219–230

    Article  MathSciNet  Google Scholar 

  20. Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for galerkin mesh-free methods. Int J Numer Meth Eng 50(2):435–466

    Article  Google Scholar 

  21. Chen J-S, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for galerkin meshfree methods. Int J Numer Meth Eng 95(5):387–418

    Article  MathSciNet  Google Scholar 

  22. Chen J-S, Yoon S, Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for galerkin mesh-free methods. Int J Numer Meth Eng 53(12):2587–2615

    Article  Google Scholar 

  23. Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Meth Eng 107(7):603–630

    Article  MathSciNet  Google Scholar 

  24. Wang J, Zhou G, Hillman M, Madra A, Bazilevs Y, Du J, Su K (2021) Consistent immersed volumetric nitsche methods for composite analysis. Comput Methods Appl Mech Eng 385:114042

    Article  MathSciNet  Google Scholar 

  25. Wu J, Wang D (2021) An accuracy analysis of galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631

    Article  MathSciNet  Google Scholar 

  26. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139(1–4):49–74

    Article  MathSciNet  Google Scholar 

  27. Wang D, Chen J-S (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin–Reissner plate formulation. Comput Methods Appl Mech Eng 193(12–14):1065–1083

    Google Scholar 

  28. Wang D, Li Z, Li L, Wu Y (2011) Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium. Sci China Technol Sci 54(3):573–580

    Article  Google Scholar 

  29. Wang D, Wang J, Wu J, Deng J, Sun M (2019) A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations. Front Struct Civ Eng 13(2):337–352

    Article  Google Scholar 

  30. Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672

    Article  MathSciNet  Google Scholar 

  31. Wang J, Wu J, Wang D (2020) A quasi-consistent integration method for efficient meshfree analysis of helmholtz problems with plane wave basis functions. Eng Anal Boundary Elem 110:42–55

    Article  MathSciNet  Google Scholar 

  32. Belytschko T, Guo Y, Kam Liu W, Ping Xiao S (2000) A unified stability analysis of meshless particle methods. Int J Num Methods Eng 48(9):1359–1400

    Article  MathSciNet  Google Scholar 

  33. Puso M, Solberg J (2006) A stabilized nodally integrated tetrahedral. Int J Numer Meth Eng 67(6):841–867

    Article  MathSciNet  Google Scholar 

  34. Wang D, Chen J-S (2008) A hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int J Numer Meth Eng 74(3):368–390

    Article  Google Scholar 

  35. Chen J-S, Wang L, Hu H-Y, Chi S-W (2009) Subdomain radial basis collocation method for heterogeneous media. Int J Numer Meth Eng 80(2):163–190

    Article  MathSciNet  Google Scholar 

  36. Puso M, Chen J, Zywicz E, Elmer W (2008) Meshfree and finite element nodal integration methods. Int J Numer Meth Eng 74(3):416–446

    Article  MathSciNet  Google Scholar 

  37. Wu C, Koishi M, Hu W (2015) A displacement smoothing induced strain gradient stabilization for the meshfree galerkin nodal integration method. Comput Mech 56(1):19–37

    Article  MathSciNet  Google Scholar 

  38. Wu C-T, Chi S-W, Koishi M, Wu Y (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Meth Eng 107(1):3–30

    Article  MathSciNet  Google Scholar 

  39. Wu C, Wu Y, Crawford JE, Magallanes JM (2017) Three-dimensional concrete impact and penetration simulations using the smoothed particle galerkin method. Int J Impact Eng 106:1–17

    Article  Google Scholar 

  40. Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21(1):28–47

    Article  MathSciNet  Google Scholar 

  41. Chen J-S, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844

    Article  Google Scholar 

  42. Moutsanidis G, Li W, Bazilevs Y (2021) Reduced quadrature for fem, iga and meshfree methods. Comput Methods Appl Mech Eng 373:113521

    Article  MathSciNet  Google Scholar 

  43. Li W, Moutsanidis G, Behzadinasab M, Hillman M, Bazilevs Y (2022) Reduced quadrature for finite element and isogeometric methods in nonlinear solids. Comput Methods Appl Mech Eng 399:115389

    Article  MathSciNet  Google Scholar 

  44. Wang J, Behzadinasab M, Li W, Bazilevs Y (2024) A stable formulation of correspondence-based peridynamics with a computational structure of a method using nodal integration. Int J Num Methods Eng. https://doi.org/10.1002/nme.7442

    Article  Google Scholar 

  45. Chi S-W, Chen J-S, Hu H-Y, Yang JP (2013) A gradient reproducing kernel collocation method for boundary value problems. Int J Numer Meth Eng 93(13):1381–1402

    Article  MathSciNet  Google Scholar 

  46. Wang J, Hillman MC (2022) Temporal stability of collocation, petrov-galerkin, and other non-symmetric methods in elastodynamics and an energy conserving time integration. Comput Methods Appl Mech Eng 393:114738

    Article  MathSciNet  Google Scholar 

  47. Wang J, Hillman M (2024) Upwind reproducing kernel collocation method for convection-dominated problems. Comput Methods Appl Mech Eng 420:116711

    Article  MathSciNet  Google Scholar 

  48. Hillman M, Chen J-S, Chi S-W (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1(3):245–256

    Article  Google Scholar 

  49. Guan PC, Chen J-S, Wu Y, Teng H, Gaidos J, Hofstetter K, Alsaleh M (2009) Semi-lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech Mater 41(6):670–683

    Article  Google Scholar 

  50. Chen J-S, Pan C, Roque C, Wang H-P (1998) A lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22:289–307

    Article  Google Scholar 

  51. Hughes TJ, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int J Numer Meth Eng 15(12):1862–1867

    Article  MathSciNet  Google Scholar 

  52. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Article  Google Scholar 

  53. Simo JC, Hughes TJ (2006) Computational inelasticity. Springer, Belin

    Google Scholar 

  54. Wang D, Wang J, Wu J (2018) Superconvergent gradient smoothing meshfree collocation method. Comput Methods Appl Mech Eng 340:728–766

  55. Wang D, Wang J, Wu J (2020) Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of kirchhoff plates. Comput Mech 65(3):877–903

    Article  MathSciNet  Google Scholar 

  56. Wu Y, Magallanes JM, Choi H-J, Crawford JE (2013) Evolutionarily coupled finite-element mesh-free formulation for modeling concrete behaviors under blast and impact loadings. J Eng Mech 139(4):525–536

  57. Wu Y, Magallanes JM, Crawford JE (2014) Fragmentation and debris evolution modeled by a point-wise coupled reproducing kernel/finite element formulation. Int J Damage Mech 23(7):1005–1034

    Article  Google Scholar 

  58. Hillman M, Lin KC, Madra A (2019) The meshfree explicit Galerkin analysis (MEGA) Code. In: 14eme Colloque National en Calcul des Structures. pp 1–9

  59. Wilkins ML, Guinan MW (1973) Impact of cylinders on a rigid boundary. J Appl Phys 44(3):1200–1206

    Article  Google Scholar 

  60. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Meth Geomech 32(12):1537–1570

    Article  Google Scholar 

  61. Kwok O-LA, Guan P-C, Cheng W-P, Sun C-T (2015) Semi-Lagrangian reproducing kernel particle method for slope stability analysis and post-failure simulation. KSCE J Civ Eng 19:107–115

    Article  Google Scholar 

Download references

Acknowledgements

The support of the work done at Penn State by Karagozian and Case Inc. is gratefully acknowledged. At Brown the work was supported through the ONR Grant No. N00014-21-1-2670. J. Wang was also supported by the Hibbitt Postdoctoral Fellowship in the School of Engineering at Brown.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiarui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hillman, M., Wilmes, D. et al. Smoothed naturally stabilized RKPM for non-linear explicit dynamics with novel stress gradient update. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02494-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02494-0

Keywords

Navigation