Skip to main content
Log in

A numerical framework based on localizing gradient damage methodology for high cycle fatigue crack growth simulations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Standard non-local gradient damage methodology for fatigue analysis has an intrinsic drawback of unusual widening of the damage zone. This causes a rapid growth of crack in the simulations which often violate experimental evidences. In order to tackle this undesirable behaviour, the localizing gradient damage methodology has been formulated for high cycle fatigue crack growth simulations. The framework comprises of coupling damage and elasticity through continuum mechanics, a fatigue damage law and an interaction function which reduces the influence of damaged regions on the surrounding locality. The present scheme prevents the spurious widening of the damage-band around the critically damaged area and therefore the non-physical growth of fatigue crack in the simulations is successfully countered. The developed framework is tested on various standard specimens under mode-I and mixed-mode high cycle fatigue loads. Nonlinear finite element analysis is used for this purpose. The discretized form of solver equations for the localizing framework is mathematically derived. Numerical examples show that the simulated crack-growth curves using proposed localizing framework agree closely with the experimental data and has a higher accuracy than the standard non-local framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Similar content being viewed by others

References

  1. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. ASME J Basic Eng 85(4):528–533. https://doi.org/10.1115/1.3656900

    Article  Google Scholar 

  2. Forman RG, Kearney VE, Engle RM (1967) Numerical analysis of crack propagation in cyclic-loaded structures. ASME J Basic Eng 89(3):459–463. https://doi.org/10.1115/1.3609637

    Article  Google Scholar 

  3. Walker EK (1970) An effective strain concept for crack propagation and fatigue life with specific applications to biaxial stress fatigue. In: Proceeding of air force conference on fatigue and fracture of aircraft structures and materials, Report AAFFDL–TR–70–144, pp 25–233

  4. McEvily AJ, Groeger J (1978) On the threshold for fatigue crack growth. Adv Res Strength Fract Mater. https://doi.org/10.1016/B978-0-08-022140-3.50087-2

    Article  Google Scholar 

  5. Tanaka K (1974) Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Eng Fract Mech 6(3):493–507. https://doi.org/10.1016/0013-7944(74)90007-1

    Article  Google Scholar 

  6. Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode. Fract Anal 560(1)

  7. Richard HA (1984) Some theoretical and experimental aspects of mixed mode fractures. In: Proceedings of the 6th international conference on fracture, New Delhi, India, pp 3337–3344. https://doi.org/10.1016/B978-1-4832-8440-8.50358-6

  8. Yan X, Du S, Zhang Z (1992) Mixed-mode fatigue crack growth prediction in biaxially stretched sheets. Eng Fract Mech 43(3):471–475. https://doi.org/10.1016/0013-7944(92)90115-U

    Article  Google Scholar 

  9. Plank R, Kuhn G (1999) Fatigue crack propagation under non-proportional mixed mode loading. Eng Fract Mech 62(2–3):203–229. https://doi.org/10.1016/S0013-7944(98)00097-6

    Article  Google Scholar 

  10. Dahlin P, Olsson M (2004) Reduction of mode I fatigue crack growth rate due to occasional mode II loading. Int J Fatigue 26(10):1083–1093. https://doi.org/10.1016/j.ijfatigue.2004.03.003

    Article  Google Scholar 

  11. Borrego LP, Antunes FV, Costa JM, Ferreira JM (2006) Mixed-mode fatigue crack growth behaviour in aluminium alloy. Int J Fatigue 28(5–6):618–626. https://doi.org/10.1016/j.ijfatigue.2005.07.047

    Article  Google Scholar 

  12. Chen Q, Guo H, Avery K, Kang H, Su X (2018) Mixed-mode fatigue crack growth and life prediction of an automotive adhesive bonding system. Eng Fract Mech 189:439–450. https://doi.org/10.1016/j.engfracmech.2017.11.004

    Article  Google Scholar 

  13. Demir O, Ayhan AO, İriç S (2017) A new specimen for mixed mode-I/II fracture tests: modeling, experiments and criteria development. Eng Fract Mech 178:457–476. https://doi.org/10.1016/j.engfracmech.2017.02.019

    Article  Google Scholar 

  14. Demir O, Ayhan AO, Sedat IRIC, Lekesiz H (2018) Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling. Chin J Aeronaut 31(7):1525–1534. https://doi.org/10.1016/j.cja.2018.05.009

    Article  Google Scholar 

  15. Floros D, Ekberg A, Larsson F (2019) Evaluation of crack growth direction criteria on mixed-mode fatigue crack growth experiments. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2019.04.013

    Article  Google Scholar 

  16. Miranda ACO, Meggiolaro MA, Castro JTP, Martha LF (2007) Path and life predictions under mixed mode I-Mode II complex loading. In International symposium on solid mechanics. University of São Paulo, São Paulo, Brazil

  17. Qian J, Fatemi A (1996) Fatigue crack growth under mixed-mode I and II loading. Fatigue Fract Eng Mater Struct 19(10):1277–1284. https://doi.org/10.1111/j.1460-2695.1996.tb00950.x

    Article  Google Scholar 

  18. Richard HA, Sander M, Fulland M, Kullmer G (2008) Development of fatigue crack growth in real structures. Eng Fract Mech 75(3–4):331–340. https://doi.org/10.1016/j.engfracmech.2007.01.017

    Article  Google Scholar 

  19. Richard HA, Schramm B, Schirmeisen NH (2014) Cracks on mixed mode loading–theories, experiments, simulations. Int J Fatigue 62:93–103. https://doi.org/10.1016/j.ijfatigue.2013.06.019

    Article  Google Scholar 

  20. Sajith S, Krishna Murthy KSR, Robi PS (2019) Prediction of accurate mixed mode fatigue crack growth curves using the Paris’ law. J Inst Eng (India) Ser C 100:165–174. https://doi.org/10.1007/s40032-017-0418-2

    Article  Google Scholar 

  21. Sajith S, Murthy KSRK, Robi PS (2020) Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2019.105285

    Article  Google Scholar 

  22. Sander M, Richard HA (2006) Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth. Int J Fatigue 28(5–6):583–591. https://doi.org/10.1016/j.ijfatigue.2005.05.012

    Article  Google Scholar 

  23. Shukla SS, Murthy KSRK (2023) A study on the effect of different Paris constants in mixed mode (I/II) fatigue life prediction in Al 7075–T6 alloy. Int J Fatigue 176:107895. https://doi.org/10.1016/j.ijfatigue.2023.107895

    Article  Google Scholar 

  24. Shukla SS, Sajith S, Murthy KSRK (2022) A new simple specimen for mixed-mode (I/II) fracture and fatigue tests: numerical and experimental studies. Eur J Mech A Solids. https://doi.org/10.1016/j.euromechsol.2022.104566

    Article  MathSciNet  Google Scholar 

  25. Varfolomeev I, Burdack M, Moroz S, Siegele D, Kadau K (2014) Fatigue crack growth rates and paths in two planar specimens under mixed mode loading. Int J Fatigue 58:12–19. https://doi.org/10.1016/j.ijfatigue.2013.04.013

    Article  Google Scholar 

  26. Ayhan AO, Demir O (2021) Computational modeling of three-dimensional mixed mode-I/II/III fatigue crack growth problems and experiments. Comput Struct. https://doi.org/10.1016/j.compstruc.2020.106399

    Article  Google Scholar 

  27. Shukla SS, Murthy KSRK, Sajith S (2023) Mixed mode (I/III) fracture studies using a new specimen setup. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2022.108036

    Article  Google Scholar 

  28. Kumar M, Ahmad S, Singh IV, Rao AV, Kumar J, Kumar V (2018) Experimental and numerical studies to estimate fatigue crack growth behavior of Ni-based super alloy. Theoret Appl Fract Mech 96:604–616. https://doi.org/10.1016/j.tafmec.2018.07.002

    Article  Google Scholar 

  29. Kumar M, Bhuwal AS, Singh IV, Mishra BK, Ahmad S, Rao AV, Kumar V (2017) Nonlinear fatigue crack growth simulations using J-integral decomposition and XFEM. Procedia Eng 173:1209–1214. https://doi.org/10.1016/j.proeng.2016.12.126

    Article  Google Scholar 

  30. Kumar M, Singh IV, Mishra BK (2019) Fatigue crack growth simulations of plastically graded materials using XFEM and J-integral decomposition approach. Eng Fract Mech 216:106470. https://doi.org/10.1016/j.engfracmech.2019.05.002

    Article  Google Scholar 

  31. Singh IV, Mishra BK, Bhattacharya S, Patil RU (2012) The numerical simulation of fatigue crack growth using extended finite element method. Int J Fatigue 36(1):109–119. https://doi.org/10.1016/j.ijfatigue.2011.08.010

    Article  Google Scholar 

  32. Chaboche JL (1981) Continuous damage mechanics—a tool to describe phenomena before crack initiation. Nucl Eng Des 64(2):233–247. https://doi.org/10.1016/0029-5493(81)90007-8

    Article  Google Scholar 

  33. Lemaitre J (1986) Local approach of fracture. Eng Fract Mech 25(5–6):523–537. https://doi.org/10.1016/0013-7944(86)90021-4

    Article  Google Scholar 

  34. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)

    Article  Google Scholar 

  35. Qian Z, Takezono S, Tao K (1996) A nonlocal damage mechanics approach to high temperature fatigue crack growth. Eng Fract Mech 53(4):535–543. https://doi.org/10.1016/0013-7944(95)00156-5

    Article  Google Scholar 

  36. Lemaitre J, Doghri I (1994) Damage 90: a post processor for crack initiation. Comput Methods Appl Mech Eng 115(3–4):197–232. https://doi.org/10.1016/0045-7825(94)90060-4

    Article  Google Scholar 

  37. Lemaitre J (1996) A course on damage mechanics. Springer-Verlag, Berlin

    Book  Google Scholar 

  38. Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin

    Google Scholar 

  39. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24(10):1642–1693. https://doi.org/10.1016/j.ijplas.2008.03.009

    Article  Google Scholar 

  40. Wahab MA, Ashcroft IA, Crocombe AD, Shaw SJ (2001) Prediction of fatigue thresholds in adhesively bonded joints using damage mechanics and fracture mechanics. J Adhes Sci Technol 15(7):763–781. https://doi.org/10.1163/15685610152540830

    Article  Google Scholar 

  41. Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD (2010) Fracture mechanics and damage mechanics based fatigue lifetime prediction of adhesively bonded joints subjected to variable amplitude fatigue. Eng Fract Mech 77(7):1073–1090. https://doi.org/10.1016/j.engfracmech.2010.03.008

    Article  Google Scholar 

  42. Ashcroft IA, Shenoy V, Critchlow GW, Crocombe AD (2010) A comparison of the prediction of fatigue damage and crack growth in adhesively bonded joints using fracture mechanics and damage mechanics progressive damage methods. J Adhes 86(12):1203–1230. https://doi.org/10.1080/00218464.2010.529383

    Article  Google Scholar 

  43. Van Do VN, Lee CH, Chang KH (2015) High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model. Int J Fatigue 70:51–62. https://doi.org/10.1016/j.ijfatigue.2014.08.013

    Article  Google Scholar 

  44. Lee CH, Chang KH, Van Do VN (2016) Modeling the high cycle fatigue behavior of T-joint fillet welds considering weld-induced residual stresses based on continuum damage mechanics. Eng Struct 125:205–216. https://doi.org/10.1016/j.engstruct.2016.07.002

    Article  Google Scholar 

  45. Jiang W, Xie X, Wang T, Zhang X, Tu ST, Wang J, Zhao X (2021) Fatigue life prediction of 316L stainless steel weld joint including the role of residual stress and its evolution: Experimental and modelling. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2020.105997

    Article  Google Scholar 

  46. Wang X, Bian Z, Zhang Z, Hu W, Meng Q (2022) Fatigue life prediction for Al–Zn–Mg alloy butt welded joints based on a fatigue damage model accounting for the influence of interior porosity. Fatigue Fract Eng Mater Struct. https://doi.org/10.1111/ffe.13932

    Article  Google Scholar 

  47. Yuan D, Cui C, Zhang Q, Li Z, Ye Z (2022) Fatigue damage evaluation of welded joints in steel bridge based on meso-damage mechanics. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2022.106898

    Article  Google Scholar 

  48. Pandey VB, Samant SS, Singh IV, Mishra BK (2020) An improved methodology based on continuum damage mechanics and stress triaxiality to capture the constraint effect during fatigue crack propagation. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2020.105823

    Article  Google Scholar 

  49. Pandey VB, Singh IV, Mishra BK, Ahmad S, Rao AV, Kumar V (2019) A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations. Eng Fract Mech 206:172–200. https://doi.org/10.1016/j.engfracmech.2018.11.021

    Article  Google Scholar 

  50. Sharma D, Pandey VB, Singh IV, Natarajan S, Kumar J, Ahmad S (2021) A polygonal FEM and continuum damage mechanics based framework for stochastic simulation of fatigue life scatter in duplex microstructure titanium alloys. Mech Mater. https://doi.org/10.1016/j.mechmat.2021.104071

    Article  Google Scholar 

  51. Sharma D, Singh IV, Kumar J (2022) A microstructure based elasto-plastic polygonal FEM and CDM approach to evaluate LCF life in titanium alloys. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2022.107356

    Article  Google Scholar 

  52. Sharma D, Singh IV, Kumar J (2023) A computational framework based on 3D microstructure modelling to predict the mechanical behaviour of polycrystalline materials. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2023.108565

    Article  Google Scholar 

  53. Peerlings RH, de Borst R, Brekelmans WM, de Vree J (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Meth Eng 39(19):3391–3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19%3c3391::AID-NME7%3e3.0.CO;2-D

    Article  Google Scholar 

  54. Aifantis EC (1984) On the microstructural origin of certain inelastic models. ASME J Eng Mater Technol 106:326–330. https://doi.org/10.1115/1.3225725

    Article  Google Scholar 

  55. Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 24(6):581–597. https://doi.org/10.1016/0020-7683(88)90059-5

    Article  Google Scholar 

  56. de Borst R, Mühlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Meth Eng 35(3):521–539. https://doi.org/10.1002/nme.1620350307

    Article  Google Scholar 

  57. Peerlings RH, de Borst R, Brekelmans WAM, Geers MG (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohes Frict Mater 3(4):323–342. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4%3c323::AID-CFM51%3e3.0.CO;2-Z

    Article  Google Scholar 

  58. Geers MGD, De Borst R, Brekelmans WAM, Peerlings R (1998) Strain-based transient-gradient damage model for failure analyses. Comput Methods Appl Mech Eng 160(1–2):133–153. https://doi.org/10.1016/S0045-7825(98)80011-X

    Article  Google Scholar 

  59. Geers MGD, De Borst R, Brekelmans WAM, Peerlings RHJ (1999) Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene. Int J Solids Struct 36(17):2557–2583. https://doi.org/10.1016/S0020-7683(98)00123-1

    Article  Google Scholar 

  60. Peerlings RH (1999) Enhanced damage modelling for fracture and fatigue. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR520108

  61. Peerlings RH, Brekelmans WM, de Borst R, Geers MG (2000) Gradient-enhanced damage modelling of high-cycle fatigue. Int J Numer Meth Eng 49(12):1547–1569. https://doi.org/10.1002/1097-0207(20001230)49:12%3c1547::AID-NME16%3e3.0.CO;2-D

    Article  Google Scholar 

  62. Nguyen GD (2011) A damage model with evolving nonlocal interactions. Int J Solids Struct 48(10):1544–1559. https://doi.org/10.1016/j.ijsolstr.2011.02.002

    Article  Google Scholar 

  63. Saroukhani S, Vafadari R, Simone A (2013) A simplified implementation of a gradient-enhanced damage model with transient length scale effects. Comput Mech 51:899–909. https://doi.org/10.1007/s00466-012-0769-8

    Article  MathSciNet  Google Scholar 

  64. Poh LH, Sun G (2017) Localizing gradient damage model with decreasing interactions. Int J Numer Meth Eng 110(6):503–522. https://doi.org/10.1002/nme.5364

    Article  MathSciNet  Google Scholar 

  65. Sarkar S, Singh IV, Mishra BK (2022) A localizing gradient plasticity model for ductile fracture. Comput Methods Appl Mech Eng 388:114205. https://doi.org/10.1016/j.cma.2021.114205

    Article  MathSciNet  Google Scholar 

  66. Sarkar S, Singh IV, Mishra BK, Shedbale AS, Poh LH (2019) A comparative study and ABAQUS implementation of conventional and localizing gradient enhanced damage models. Finite Elem Anal Des 160:1–31. https://doi.org/10.1016/j.finel.2019.04.001

    Article  Google Scholar 

  67. Sarkar S, Singh IV, Mishra BK (2020) A thermo-mechanical gradient enhanced damage method for fracture. Comput Mech 66:1399–1426. https://doi.org/10.1007/s00466-020-01908-z

    Article  MathSciNet  Google Scholar 

  68. Sarkar S, Singh IV, Mishra BK (2022) A simple and efficient implementation of localizing gradient damage method in COMSOL for fracture simulation. Eng Fract Mech 269:108552. https://doi.org/10.1016/j.engfracmech.2022.108552

    Article  Google Scholar 

  69. Sarkar S, Singh IV, Mishra BK (2021) A simplified continuous–discontinuous approach to fracture based on decoupled localizing gradient damage method. Comput Methods Appl Mech Eng 383:113893. https://doi.org/10.1016/j.cma.2021.113893

    Article  MathSciNet  Google Scholar 

  70. Negi A, Kumar S (2019) Localizing gradient damage model with smoothed stress based anisotropic nonlocal interactions. Eng Fract Mech 214:21–39. https://doi.org/10.1016/j.engfracmech.2019.04.011

    Article  Google Scholar 

  71. Negi A, Kumar S, Poh LH (2020) A localizing gradient damage enhancement with micromorphic stress-based anisotropic nonlocal interactions. Int J Numer Meth Eng 121(18):4003–4027. https://doi.org/10.1002/nme.6397

    Article  MathSciNet  Google Scholar 

  72. Nguyen TH, Bui TQ, Hirose S (2018) Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements. Comput Methods Appl Mech Eng 328:498–541. https://doi.org/10.1016/j.cma.2017.09.019

    Article  MathSciNet  Google Scholar 

  73. Vandoren B, Simone A (2018) Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models. Comput Methods Appl Mech Eng 332:644–685. https://doi.org/10.1016/j.cma.2017.12.027

    Article  MathSciNet  Google Scholar 

  74. Negi A, Singh U, Kumar S (2021) Structural size effect in concrete using a micromorphic stress-based localizing gradient damage model. Eng Fract Mech 243:107511. https://doi.org/10.1016/j.engfracmech.2020.107511

    Article  Google Scholar 

  75. Negi A, Soni A, Kumar S (2022) An anisotropic localizing gradient damage approach for failure analysis of fiber reinforced composites. Compos Struct 294:115677. https://doi.org/10.1016/j.compstruct.2022.115677

    Article  Google Scholar 

  76. Negi A, Singh IV, Barsoum I (2023) A gradient-enhanced damage model for anisotropic brittle fracture with interfacial damage in polycrystalline materials. Eng Fract Mech 280:109093. https://doi.org/10.1016/j.engfracmech.2023.109093

    Article  Google Scholar 

  77. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  MathSciNet  Google Scholar 

  78. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405. https://doi.org/10.1007/s00466-014-1109-y

    Article  MathSciNet  Google Scholar 

  79. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229. https://doi.org/10.1016/j.jmps.2009.04.011

    Article  Google Scholar 

  80. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148. https://doi.org/10.1007/s10659-007-9107-3

    Article  MathSciNet  Google Scholar 

  81. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778. https://doi.org/10.1016/j.cma.2010.04.011

    Article  MathSciNet  Google Scholar 

  82. Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99. https://doi.org/10.1016/j.jmps.2017.03.015

    Article  MathSciNet  Google Scholar 

  83. de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput Methods Appl Mech Eng 312:78–94. https://doi.org/10.1016/j.cma.2016.05.015

    Article  MathSciNet  Google Scholar 

  84. Boldrini JL, de Moraes EB, Chiarelli LR, Fumes FG, Bittencourt M (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Comput Methods Appl Mech Eng 312:395–427. https://doi.org/10.1016/j.cma.2016.08.030

    Article  MathSciNet  Google Scholar 

  85. Alessi R, Vidoli S, De Lorenzis L (2018) A phenomenological approach to fatigue with a variational phase-field model: the one-dimensional case. Eng Fract Mech 190:53–73. https://doi.org/10.1016/j.engfracmech.2017.11.036

    Article  Google Scholar 

  86. Carrara P, Ambati M, Alessi R, De Lorenzis L (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Comput Methods Appl Mech Eng 361:112731. https://doi.org/10.1016/j.cma.2019.112731

    Article  MathSciNet  Google Scholar 

  87. Schreiber C, Kuhn C, Müller R, Zohdi T (2020) A phase field modeling approach of cyclic fatigue crack growth. Int J Fract 225:89–100. https://doi.org/10.1007/s10704-020-00468-w

    Article  Google Scholar 

  88. Loew PJ, Peters B, Beex LA (2020) Fatigue phase-field damage modeling of rubber using viscous dissipation: crack nucleation and propagation. Mech Mater 142:103282. https://doi.org/10.1016/j.mechmat.2019.103282

    Article  Google Scholar 

  89. Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. Int J Fatigue 150:106297. https://doi.org/10.1016/j.ijfatigue.2021.106297

    Article  Google Scholar 

  90. Seleš K, Aldakheel F, Tonković Z, Sorić J, Wriggers P (2021) A general phase-field model for fatigue failure in brittle and ductile solids. Comput Mech 67:1431–1452. https://doi.org/10.1007/s00466-021-01996-5

    Article  MathSciNet  Google Scholar 

  91. Golahmar A, Niordson CF, Martínez-Pañeda E (2023) A phase field model for high-cycle fatigue: total-life analysis. Int J Fatigue 170:107558. https://doi.org/10.1016/j.ijfatigue.2023.107558

    Article  Google Scholar 

  92. Jaccon A, Prabel B, Molnár G, Bluthé J, Gravouil A (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elem Anal Des 224:104004. https://doi.org/10.1016/j.finel.2023.104004

    Article  MathSciNet  Google Scholar 

  93. Mandal TK, Nguyen VP, Heidarpour A (2019) Phase field and gradient enhanced damage models for quasi-brittle failure: a numerical comparative study. Eng Fract Mech 207:48–67. https://doi.org/10.1016/j.engfracmech.2018.12.013

    Article  Google Scholar 

  94. Suresh S (1998) Fatigue of materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  95. Bathe KJ, Cimento AP (1980) Some practical procedures for the solution of nonlinear finite element equations. Comput Methods Appl Mech Eng 22(1):59–85. https://doi.org/10.1016/0045-7825(80)90051-1

    Article  Google Scholar 

  96. Negru R, Marsavina L, Muntean S, Pasca N (2013) Fatigue behaviour of stainless steel used for turbine runners. Adv Eng Forum 8:413–420. https://doi.org/10.4028/www.scientific.net/AEF.8-9.413

    Article  Google Scholar 

  97. Stephens RI (1988) Fatigue and fracture toughness of A356-T6 cast aluminum alloy, society of automotive engineers. 400 Commonwealth Drive, Warrendale, PA, vol SP-760, p 15096

  98. Tajiri A, Uematsu Y, Kakiuchi T, Suzuki Y (2015) Fatigue crack paths and properties in A356–T6 aluminum alloy microstructurally modified by friction stir processing under different conditions. Fratt Integr Strutt. https://doi.org/10.3221/IGF-ESIS.34.38

    Article  Google Scholar 

  99. Chopra OK (2002) Development of a fatigue design curve for austenitic stainless steels in LWR environments: a review. In: ASME Pressure vessels and piping conference, vol 46504, pp 119–132. https://doi.org/10.1115/PVP2002-1229

  100. Benachour M, Hadjoui A, Benguediab M, Benachour N (2010) Effect of the amplitude loading on fatigue crack growth. Procedia Eng 2(1):121–127. https://doi.org/10.1016/j.proeng.2010.03.013

    Article  Google Scholar 

  101. Mazlan S, Yidris N, Koloor SSR, Petrů M (2020) Experimental and numerical analysis of fatigue life of aluminum Al 2024–T351 at elevated temperature. Metals 10(12):1581. https://doi.org/10.3390/met10121581

    Article  Google Scholar 

  102. Kumar R, Garg SBL (1985) Influence of applied stress ratio on fatigue crack growth in 6063-T6 aluminium alloy. Int J Press Vessels Pip 20(1):65–76. https://doi.org/10.1016/0308-0161(85)90035-3

    Article  Google Scholar 

  103. Tomaszewski T, Sempruch J (2017) Fatigue life prediction of aluminium profiles for mechanical engineering. J Theor Appl Mech 55(2):497–507. https://doi.org/10.15632/jtam-pl.55.2.497

    Article  Google Scholar 

Download references

Acknowledgements

This present work was carried out as a part of the doctoral research work of Mr. Sandipan Baruah under the fellowship of the Ministry of Education, Government of India. We gratefully acknowledge the computational support provided by the Department of Mechanical and Industrial Engineering, Indian Institute of Technology (IIT), Roorkee.

Author information

Authors and Affiliations

Authors

Contributions

SB: Conceptualization, Methodology, Software, Formal analysis, Validation, Writing-Original Draft. IVS: Resources, Writing-Review and Editing, Supervision, Project administration.

Corresponding author

Correspondence to Indra Vir Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Linearization of damage

At a particular load-step (n + 1), the damage at the end of iterations i and i + 1 are given below in Eqs. (48) and (49) respectively.

$$ D_{n + 1}^{(i + 1)} = D_{n} + \left( {(1 - \eta )f\left( {D_{n} ,e_{n} } \right) + \eta f\left( {D_{n + 1}^{(i + 1)} ,e_{n + 1}^{(i + 1)} } \right)} \right)\left( {e_{n + 1}^{(i + 1)} - e_{n} } \right) $$
(48)
$$ D_{n + 1}^{(i)} = D_{n} + \left( {(1 - \eta )f\left( {D_{n} ,e_{n} } \right) + \eta f\left( {D_{n + 1}^{(i)} ,e_{n + 1}^{(i)} } \right)} \right)\left( {e_{n + 1}^{(i)} - e_{n} } \right) $$
(49)

Subtracting, Eqs. (48) from Eq. (49),

$$ \begin{aligned} \delta D = & D_{n + 1}^{(i + 1)} - D_{n + 1}^{(i)} = (1 - \eta )f\left( {D_{n} ,e_{n} } \right)\left( {e_{n + 1}^{(i + 1)} - e_{n + 1}^{(i)} } \right) \\ & \quad + \eta f\left( {D_{n + 1}^{(i + 1)} ,e_{n + 1}^{(i + 1)} } \right)\left( {e_{n + 1}^{(i + 1)} - e_{n} } \right) \\ & \quad - \eta f\left( {D_{n + 1}^{(i)} ,e_{n + 1}^{(i)} } \right)\left( {e_{n + 1}^{(i)} - e_{n} } \right) \\ \end{aligned} $$
(50)

By applying first term of Taylor’s series expansion on f,

$$ f\left( {D_{n + 1}^{(i + 1)} ,e_{n + 1}^{(i + 1)} } \right) = f\left( {D_{n + 1}^{(i)} ,e_{n + 1}^{(i)} } \right) + \frac{\partial f}{{\partial D}}{\updelta }D + \frac{\partial f}{{\partial e}}{\updelta }e $$
(51)

Also, the linearization of non-local strain (e),

$$ e_{n + 1}^{(i + 1)} = e_{n + 1}^{(i)} + {\updelta }e $$
(52)

Substituting Eqs. (51) and (52) in (50) and neglecting the product of infinitesimal terms,

$$ \begin{aligned} \delta D = & (1 - \eta )f\left( {D_{n} ,e_{n} } \right)\delta e + \eta f\left( {D_{n + 1}^{(i)} ,e_{n + 1}^{(i)} } \right)\delta e \\ & \quad + \eta \frac{\partial f}{{\partial D}}\left( {e_{n + 1}^{(i + 1)} - e_{n} } \right)\delta D + \,\eta \frac{\partial f}{{\partial e}}\left( {e_{n + 1}^{(i + 1)} - e_{n} } \right)\delta e \\ \end{aligned} $$
(53)

At any gauss point, the incremental non-local strain (δe) can be written using linear shape functions Se and the nodal vector of non-local strain (δe) as,

$$ {\updelta }e = {\mathbf{S}}_{e} \,{\updelta }{\mathbf{e}} $$
(54)

Substituting Eq. (54) into (53) and rearranging the terms, the linearized damage is obtained as shown below,

$$ {\updelta }D = p^{(i)} \,{\mathbf{S}}_{e} {\updelta }{\mathbf{e}} $$
(55)

where the expression of p(i) is given as,

$$ p^{(i)} = \frac{{(1 - \eta )f\left( {D_{n} ,e_{n} } \right)\,\, + \,\,\eta f\left( {D_{n + 1}^{(i)} ,e_{n + 1}^{(i)} } \right)\, + \,\,\eta \frac{\partial f}{{\partial e}}\left( {e_{n + 1}^{(i + 1)} - e_{n} } \right)}}{{1 - \,\eta \frac{\partial f}{{\partial D}}\left( {e_{n + 1}^{(i + 1)} - e_{n} } \right)}} $$
(56)

Appendix 2: Linearization of moment stress

At a particular load-step (n + 1) and at a particular iteration (i), the moment stress is given as

$$ \left( {{{\varvec{\upvarepsilon}}}_{m} } \right)_{n + 1}^{(i)} = \varphi_{n + 1}^{(i)} \,h\,l_{s}^{2} \,\,\left( {\nabla e} \right)_{n + 1}^{(i)} $$
(57)

By applying first term of Taylor’s series expansion on εm,

$$ {\updelta }{{\varvec{\upvarepsilon}}}_{m} = \left( {\frac{{\partial {{\varvec{\upvarepsilon}}}_{m} }}{\partial \varphi }} \right)_{n + 1}^{(i)} \left( {\frac{\partial \varphi }{{\partial D}}} \right)_{n + 1}^{(i)} {\updelta }D\,\,\, + \,\,\,\left( {\frac{{\partial {{\varvec{\upvarepsilon}}}_{m} }}{{\partial \left( {\nabla e} \right)}}} \right)_{n + 1}^{(i)} {\updelta }\left( {\nabla e} \right) $$
(58)

Furthermore,

$$ \left( {\frac{{\partial {{\varvec{\upvarepsilon}}}_{m} }}{\partial \varphi }} \right)_{n + 1}^{(i)} = \,h\,l_{s}^{2} \,\,\left( {\nabla e} \right)_{n + 1}^{(i)} $$
(59)
$$ \left( {\frac{{\partial {{\varvec{\upvarepsilon}}}_{m} }}{{\partial \left( {\nabla e} \right)}}} \right)_{n + 1}^{(i)} = \,\varphi_{n + 1}^{(i)} \,h\,l_{s}^{2} \,\, $$
(60)
$$ \left( {\frac{\partial \varphi }{{\partial D}}} \right)_{n + 1}^{(i)} = \frac{ - \mu }{{1 - \exp ( - \mu )}}\exp ( - \mu D_{n + 1}^{(i)} ) $$
(61)
$$ \left( {\nabla e} \right)_{n + 1}^{(i)} = {\mathbf{B}}_{e} {\mathbf{e}}_{n + 1}^{(i)} $$
(62)

Substituting Eqs. (59, 60, 61, 62) and (55) into (58), the linearized moment stress is obtained as shown below,

$$ {\updelta }{{\varvec{\upvarepsilon}}}_{m} = h\,l_{s}^{2} \left( {{\mathbf{B}}_{e} {\mathbf{e}}_{n + 1}^{(i)} \,p^{(i)} q^{(i)} {\mathbf{S}}_{e} \,{\updelta }{\mathbf{e}}\,\, + \,\,\varphi_{(n + 1)}^{(i)} \,{\mathbf{B}}_{e} \,{\updelta }{\mathbf{e}}} \right) $$
(63)

where the expression of q(i) is given as,

$$ q^{(i)} = \frac{ - \mu }{{1 - \exp ( - \mu )}}\exp ( - \mu D_{n + 1}^{(i)} ) $$
(64)

Appendix 3: Derivatives of equivalent strain

The equivalent Von-Mises strain is given as,

$$ \varepsilon_{eq} = \frac{1}{1 + \nu }\sqrt {3J_{2\varepsilon } } $$
(65)

where J2ε is the second invariant of the deviatoric strain tensor which is given below for plane stress condition.

$$ J_{2\varepsilon } = \frac{1}{3}\left( {\varepsilon_{xx}^{2} + \varepsilon_{yy}^{2} + \varepsilon_{zz}^{2} - \varepsilon_{xx} \varepsilon_{yy} - \varepsilon_{yy} \varepsilon_{zz} - \varepsilon_{zz} \varepsilon_{xx} } \right) + \varepsilon_{xy}^{2} $$
(66)

The derivatives of equivalent strain are given as,

$$ \frac{{\partial \varepsilon_{eq} }}{{\partial \varepsilon_{xx} }} = \frac{{\partial \varepsilon_{eq} }}{{\partial J_{2\varepsilon } }}\frac{{\partial J_{2\varepsilon } }}{{\partial \varepsilon_{xx} }} = \frac{1}{2(1 + \nu )}\sqrt {\frac{3}{{J_{2\varepsilon } }}} \times \frac{1}{3}\left( {2\varepsilon_{xx} - \varepsilon_{yy} - \varepsilon_{zz} } \right) $$
(67)
$$ \frac{{\partial \varepsilon_{eq} }}{{\partial \varepsilon_{yy} }} = \frac{{\partial \varepsilon_{eq} }}{{\partial J_{2\varepsilon } }}\frac{{\partial J_{2\varepsilon } }}{{\partial \varepsilon_{yy} }} = \frac{1}{2(1 + \nu )}\sqrt {\frac{3}{{J_{2\varepsilon } }}} \times \frac{1}{3}\left( {2\varepsilon_{yy} - \varepsilon_{xx} - \varepsilon_{zz} } \right) $$
(68)
$$ \frac{{\partial \varepsilon_{eq} }}{{\partial \varepsilon_{xy} }} = \frac{{\partial \varepsilon_{eq} }}{{\partial J_{2\varepsilon } }}\frac{{\partial J_{2\varepsilon } }}{{\partial \varepsilon_{xy} }} = \frac{1}{2(1 + \nu )}\sqrt {\frac{3}{{J_{2\varepsilon } }}} \times 2\varepsilon_{xy} $$
(69)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, S., Singh, I.V. A numerical framework based on localizing gradient damage methodology for high cycle fatigue crack growth simulations. Comput Mech 74, 417–446 (2024). https://doi.org/10.1007/s00466-023-02439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02439-z

Keywords

Navigation