Skip to main content
Log in

A contact method for B-spline material point method with application in impact and penetration problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A novel contact algorithm for the B-spline material point method (referred to as cBSMPM) is proposed to address impact and penetration problems. The proposed contact algorithm is based on the Lagrangian multiplier method and enables the cBSMPM to accurately predict the contact, friction, and separation of two continuum bodies, where the numerical results are free from the cell-crossing noise of particles presented in the conventional MPM. In cBSMPM, the contact algorithm is implemented on the computational background grid built from the control points associated with the knot vectors of the B-splines. Correspondingly, a comprehensive criterion, including the nodal momentum condition and the physical distance between the bodies, is introduced to detect the contact event accurately. The Greville abscissa is utilized to determine the coordinates of computational grid nodes, facilitating the calculation of the actual distance between the approaching bodies. A comprehensive set of numerical examples is presented, and the numerical results from the proposed method agree well with the analytical solution and the experimental data documented in the literature, where the effectiveness of the proposed criterion is demonstrated in avoiding spurious contact and the corresponding stress oscillations. Moreover, it is demonstrated that increasing the B-spline basis function order can improve solution accuracy in terms of smooth stress/pressure field for impact and penetration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Asadi Kalameh H, Karamali A, Anitescu C, Rabczuk T (2012) High velocity impact of metal sphere on thin metallic plate using smooth particle hydrodynamics (SPH) method. Front Struct Civ Eng 6:101–110

    Article  Google Scholar 

  2. Grimaldi A, Sollo A, Guida M, Marulo F (2013) Parametric study of a SPH high velocity impact analysis-a birdstrike windshield application. Compos Struct 96:616–630

    Article  Google Scholar 

  3. Al Khalil M, Frissane H, Taddei L, Meng S, Lebaal N, Demoly F, Bir C, Roth S (2019) SPH-based method to simulate penetrating impact mechanics into ballistic gelatin: toward an understanding of the perforation of human tissue. Extrem Mech Lett 29:100479

    Article  Google Scholar 

  4. Zhang Z, Liu M (2017) Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two-and three-dimensional spaces. Eng Anal Bound Elem 83:141–157

    Article  MathSciNet  MATH  Google Scholar 

  5. Li G, Belytschko T (2001) Element-free Galerkin method for contact problems in metal forming analysis. Eng Comput 18:62

    Article  MATH  Google Scholar 

  6. Feng D-S, Guo R-W, Wang H-H (2015) An element-free Galerkin method for ground penetrating radar numerical simulation. J Central South Univ 22(1):261–269

    Article  Google Scholar 

  7. Yang T, Dong L, Atluri SN (2021) A simple Galerkin meshless method, the Fragile Points method using point stiffness matrices, for 2D linear elastic problems in complex domains with crack and rupture propagation. Int J Numer Methods Eng 122(2):348–385

    Article  MathSciNet  Google Scholar 

  8. Sherburn JA, Roth MJ, Chen J, Hillman M (2015) Meshfree modeling of concrete slab perforation using a reproducing kernel particle impact and penetration formulation. Int J Impact Eng 86:96–110

    Article  Google Scholar 

  9. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang X, Sze K, Ma S (2006) An explicit material point finite element method for hyper-velocity impact. Int J Numer Methods Eng 66(4):689–706

    Article  MATH  Google Scholar 

  11. Lian Y, Zhang X, Liu Y (2011) Coupling of finite element method with material point method by local multi-mesh contact method. Comput Methods Appl Mech Eng 200(47–48):3482–3494

    Article  MathSciNet  MATH  Google Scholar 

  12. Lian Y, Zhang X, Liu Y (2012) An adaptive finite element material point method and its application in extreme deformation problems. Comput Methods Appl Mech Eng 241:275–285

    Article  MATH  Google Scholar 

  13. Chen F, Chen R, Jiang B (2020) The adaptive finite element material point method for simulation of projectiles penetrating into ballistic gelatin at high velocities. Eng Anal Bound Elem 117:143–156

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu C, Sun W (2020) ILS-MPM: an implicit level-set-based material point method for frictional particulate contact mechanics of deformable particles. Comput Methods Appl Mech Eng 369:113168

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma S, Zhang X, Qiu X (2009) Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int J Impact Eng 36(2):272–282

    Article  Google Scholar 

  16. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–496

    Google Scholar 

  17. Steffen M, Kirby RM, Berzins M (2008) Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Methods Eng 76(6):922–948

    Article  MathSciNet  MATH  Google Scholar 

  18. Andersen S, Andersen L (2010) Analysis of spatial interpolation in the material-point method. Comput Struct 88(7–8):506–518

    Article  MATH  Google Scholar 

  19. Sadeghirad A, Brannon RM, Burghardt J (2011) A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Methods Eng 86(12):1435–1456

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang DZ, Ma X, Giguere PT (2011) Material point method enhanced by modified gradient of shape function. J Comput Phys 230(16):6379–6398

    Article  MathSciNet  MATH  Google Scholar 

  21. Motlagh YG, Coombs WM (2017) An implicit high-order material point method. Procedia Eng 175:8–13

    Article  Google Scholar 

  22. Tielen R, Wobbes E, Möller M, Beuth L (2017) A high order material point method. Procedia Eng 175:265–272

    Article  Google Scholar 

  23. Gan Y, Sun Z, Chen Z, Zhang X, Liu Y (2018) Enhancement of the material point method using B-spline basis functions. Int J Numer Methods Eng 113(3):411–431

    Article  MathSciNet  Google Scholar 

  24. Moutsanidis G, Long CC, Bazilevs Y (2020) IGA-MPM: the isogeometric material point method. Comput Methods Appl Mech Eng 372:113346

    Article  MathSciNet  MATH  Google Scholar 

  25. Li S, Qian D, Liu WK, Belytschko T (2001) A meshfree contact-detection algorithm. Comput Methods Appl Mech Eng 190(24–25):3271–3292

    Article  MathSciNet  MATH  Google Scholar 

  26. Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252

    Article  MATH  Google Scholar 

  27. Bardenhagen S, Brackbill J, Sulsky D (2000) The material-point method for granular materials. Comput Methods Appl Mech Eng 187(3–4):529–541

    Article  MATH  Google Scholar 

  28. Guilkey JE, Bardenhagen S, Roessig K, Brackbill J, Witzel W, Foster J (2001) Improved contact algorithm for the material point method and application to stress propagation in granular material. Comput Model Eng Sci 2:509

    MATH  Google Scholar 

  29. Huang P, Zhang X, Ma S, Huang X (2011) Contact algorithms for the material point method in impact and penetration simulation. Int J Numer Methods Eng 85(4):498–517

    Article  MATH  Google Scholar 

  30. Ma Z, Zhang X, Huang P (2010) An object-oriented MPM framework for simulation of large deformation and contact of numerous grains. Comput Model Eng Sci (CMES) 55(1):61

    Google Scholar 

  31. Johannessen Kjetil André, Kvamsdal Trond, Dokken Tor (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514

    Article  MathSciNet  MATH  Google Scholar 

  32. Farin G (2014) Curves and surfaces for computer-aided geometric design: a practical guide. Elsevier

    MATH  Google Scholar 

  33. Seo S, Min O, Lee J (2008) Application of an improved contact algorithm for penetration analysis in SPH. Int J Impact Eng 35(6):578–588

    Article  Google Scholar 

  34. De Vuyst T, Vignjevic R, Campbell J (2005) Coupling between meshless and finite element methods. Int J Impact Eng 31(8):1054–1064

    Article  Google Scholar 

  35. Wingate CA, Dilts GA, Mandell DA, Crotzer LA, Knapp CE (1998) Progress in smooth particle hydrodynamics, Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

  36. Piekutowski A, Forrestal M, Poormon K, Warren T (1996) Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts. Int J Impact Eng 18(7–8):877–887

    Article  Google Scholar 

  37. Meyers MA (1994) Dynamic behavior of materials. Wiley

    Book  MATH  Google Scholar 

  38. Park Y-K, Fahrenthold EP (2005) A kernel free particle-finite element method for hypervelocity impact simulation. Int J Numer Methods Eng 63(5):737–759

    Article  MATH  Google Scholar 

  39. Holmberg L, Lundberg P, Westerling L (1993) An experimental investigation of wha long rods penetrating oblique steel plates. In: Proceedings of the 14th international symposium on ballistics. Quebec City (Canada), pp 515–524

  40. Liden E, Ottosson J, Holmberg L (1996) WHA long rods penetrating stationary and moving oblique steel plates. In: 16th international symposium on ballistics, vol 3, pp 703–712

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China, under Grant No. 11972086 and 52105287, the Fundamental Research Funds for the Central Universities, and the Beijing Institute of Technology Research Fund Program for Young Scholars (XSQD-202223002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Lian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. B-spline

Appendix A. B-spline

A basic component for the construction of B-splines is the knot vector, which is a non-decreasing set of coordinates in the parametric domain. An open 1D knot vector can be written as \(\varvec{\Xi }=\left\{ \xi _0, \xi _1, \ldots , \xi _{n+\mathrm{p-1}}, \xi _{n+\textrm{p}}\right\} \), where \(\xi _0=\cdots =\xi _{\textrm{p}}<\xi _{\mathrm{p+1}}<\cdots <\xi _{n}=\cdots =\xi _{n+\mathrm p}\), \(\xi _i\) is \(i \)th knot, \(i \) is the knot index, \(i=0,1, \ldots , n+\textrm{p}\), and n and \(\textrm{p}\) are the number and polynomial order of B-spline functions, respectively.

The B-spline basis functions are defined using the Cox-de Boor formula as follows.

$$\begin{aligned} N_i^0(\xi )=\left\{ \begin{array}{lc} 1 &{} \text{ if } \xi _i \le \xi \le \xi _{i+1} \\ 0 &{} \text{ otherwise } \end{array}\right. \end{aligned}$$
(A.1)

and for \(\textrm{p} =1,2,3,\ldots ,\) they are defined by

$$\begin{aligned} N_i^{\textrm{p}}(\xi )= & {} \frac{\xi -\xi _i}{\xi _{i+\textrm{p}}-\xi _i} N_i^{\mathrm{p-1}}(\xi )\nonumber \\{} & {} +\frac{\xi _{i+\mathrm{p+1}}-\xi }{\left( \xi _{i+\mathrm{p+1}}-\xi _{i+1}\right) } N_{i+1}^{\mathrm{p-1}}(\xi ) \end{aligned}$$
(A.2)

In this definition, \(0/0=0\) is assumed. The derivative of those basis functions is given as

$$\begin{aligned} \frac{d N_i^{\textrm{p}}(\xi )}{d \xi }= & {} \frac{\textrm{p}}{\xi _{i+\textrm{p}}-\xi _i} N_i^{\mathrm{p-1}}(\xi )\nonumber \\{} & {} -\frac{\textrm{p}}{\left( \xi _{i+\mathrm{p+1}}-\xi _{i+1}\right) } N_{i+1}^{\mathrm{p-1}}(\xi ) \end{aligned}$$
(A.3)

The above is the definition of B-spline basis functions, from which it can be noted that the basis functions have the following properties.

  1. (1)

    Non-negative

    $$\begin{aligned} N_i^{\textrm{p}}(\xi ) \ge 0, \ \ \ \ \ \ \forall \xi \in \varvec{\Xi }\end{aligned}$$
    (A.4)
  2. (2)

    Partition of unity

    $$\begin{aligned} \sum _{i=1}^n N_i^{\textrm{p}}(\xi )=1, \ \ \ \ \ \ \forall \xi \in \varvec{\Xi }\end{aligned}$$
    (A.5)
  3. (3)

    Compact support

The support of each basis function \(N_i^{\textrm{p}}\) is compact and contained in the interval \(\left[ \xi _i, \xi _{i+\mathrm{p+1}}\right] \), and it becomes larger as the order increases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lian, Y., Li, MJ. et al. A contact method for B-spline material point method with application in impact and penetration problems. Comput Mech (2023). https://doi.org/10.1007/s00466-023-02414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-023-02414-8

Keywords

Navigation