Skip to main content
Log in

A meshfree orthotropic laminated shell model for geometrically nonlinear static and dynamic analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A meshfree orthotropic laminated shell model for geometrically nonlinear static and dynamic analysis based on the reproducing kernel particle method (RKPM) and the Mindlin-Reissner shell theory is proposed for the first time, suitable for dealing with the finite deformation of composite shell structures of arbitrary geometry in engineering. The Mindlin-Reissner shell theory is adopted to describe the geometric configuration of the laminated shells via a single-layer particle. Then, the Galerkin weak form governing equations are established explicitly and discretized using RKPM and linear transformation in the thickness direction. Furthermore, a laminate stacking sequence that can eliminate the coupling terms of linear and angular acceleration is proposed for simplification. For considering the orthotropic materials, the stress–strain transformation between local and material coordinates is introduced. A stiffened laminated shell model is also presented for simulating complex composited structures. The accuracy and convergence of the proposed laminated shell model are verified through several static and dynamic benchmarks, demonstrating the ability of the presented model to solve the nonlinear response of composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Zhang Y, Yang C (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88:147–157

    Google Scholar 

  2. Kirchhoff G (1850) Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik (Crelles Journal) 1850:51–88

    Google Scholar 

  3. Yang PC, Norris CH, Stavsky Y (1966) Elastic wave propagation in heterogeneous plates. Int J Solids Struct 2:665–684

    Google Scholar 

  4. Whitney JM and Leissa AW (1969) Analysis of heterogeneous anisotropic plates

  5. Whitney J (1969) The effect of transverse shear deformation on the bending of laminated plates. J Compos Mater 3:534–547

    Google Scholar 

  6. Mindlin R (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates

  7. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates

  8. Whitney JM, Pagano N (1970) Shear deformation in heterogeneous anisotropic plates

  9. Aboudi J, Cederbaum G (1989) Analysis of viscoelastic laminated composite plates. Compos Struct 12:243–256

    Google Scholar 

  10. Bert C, Chen T (1978) Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates. Int J Solids Struct 14:465–473

    Google Scholar 

  11. Mantari J, Ore M (2015) Free vibration of single and sandwich laminated composite plates by using a simplified FSDT. Compos Struct 132:952–959

    Google Scholar 

  12. Reddy JN (1984) A simple higher-order theory for laminated composite plates

  13. Ren-Huai L, Ling-Hui H (1991) A simple theory for non-linear bending of laminated composite rectangular plates including higher-order effects. Int J Non-Linear Mech 26:537–545

    Google Scholar 

  14. Carrera E (2007) On the use of transverse shear stress homogeneous and non-homogeneous conditions in third-order orthotropic plate theory. Compos Struct 77:341–352

    Google Scholar 

  15. Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14:225–230

    Google Scholar 

  16. Wung P (1997) Laminated composite structures by continuum-based shell elements with transverse deformation. Comput Struct 62:1073–1090

    Google Scholar 

  17. Mohebpour S, Malekzadeh P, Ahmadzadeh A (2011) Dynamic analysis of laminated composite plates subjected to a moving oscillator by FEM. Compos Struct 93:1574–1583

    Google Scholar 

  18. Arani AG, Maghamikia S, Mohammadimehr M, Arefmanesh A (2011) Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods. J Mech Sci Technol 25:809–820

    Google Scholar 

  19. Kordkheili SH, Soltani Z (2018) A layerwise finite element for geometrically nonlinear analysis of composite shells. Compos Struct 186:355–364

    Google Scholar 

  20. Casanova CF, Gallego A (2013) NURBS-based analysis of higher-order composite shells. Compos Struct 104:125–133

    Google Scholar 

  21. Shahmohammadi MA, Azhari M, Saadatpour MM, Sarrami-Foroushani S (2020) Geometrically nonlinear analysis of sandwich FGM and laminated composite degenerated shells using the isogeometric finite strip method. Comput Methods Appl Mech Eng 371:113311

    MathSciNet  Google Scholar 

  22. Liu N, Ren X, Lua J (2020) An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures. Compos Struct 237:111893

    Google Scholar 

  23. Shafei E, Faroughi S, Rabczuk T (2019) Isogeometric HSDT approach for dynamic stability analysis of general anisotropic composite plates. Compos Struct 220:926–939

    Google Scholar 

  24. Morshedsolouk F, Karimirad M (2021) Postbuckling of marine stiffened composite plates with initial geometric imperfections using progressive failure analysis. J Mar Sci Appl 1–12

  25. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Google Scholar 

  26. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Google Scholar 

  27. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics review. Math Mech Solids 24:3714–3739

    MathSciNet  Google Scholar 

  28. Zhang Q, Li S, Zhang A-M, Peng Y (2021) On nonlocal geometrically exact shell theory and modeling fracture in shell structures. Comput Methods Appl Mech Eng 386:114074

    MathSciNet  Google Scholar 

  29. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    MathSciNet  Google Scholar 

  30. Liu WK, Chen Y (1995) Wavelet and multiple scale reproducing kernel methods. Int J Numer Methods Fluids 21:901–931

    MathSciNet  Google Scholar 

  31. Liu WK, Chen Y, Jun S, Chen J, Belytschko T, Pan C, Uras R, Chang C (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3:3–80

    MathSciNet  Google Scholar 

  32. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    MathSciNet  Google Scholar 

  33. Liu W-K, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143:113–154

    MathSciNet  Google Scholar 

  34. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    MathSciNet  Google Scholar 

  35. Liew KM, Zhao X, Ferreira AJ (2011) A review of meshless methods for laminated and functionally graded plates and shells. Compos Struct 93:2031–2041

    Google Scholar 

  36. Liew K, Huang Y (2003) Bending and buckling of thick symmetric rectangular laminates using the moving least-squares differential quadrature method. Int J Mech Sci 45:95–114

    Google Scholar 

  37. Wang J, Liew K, Tan M, Rajendran S (2002) Analysis of rectangular laminated composite plates via FSDT meshless method. Int J Mech Sci 44:1275–1293

    Google Scholar 

  38. Lin J, Naceur H, Laksimi A, Coutellier D (2014) On the implementation of a nonlinear shell-based SPH method for thin multilayered structures. Compos Struct 108:905–914

    Google Scholar 

  39. Chen W, Luo W, Chen S, Peng L (2022) A FSDT meshfree method for free vibration analysis of arbitrary laminated composite shells and spatial structures. Compos Struct 279:114763

    Google Scholar 

  40. Liew K, Wang J, Tan M, Rajendran S (2004) Nonlinear analysis of laminated composite plates using the mesh-free kp-Ritz method based on FSDT. Comput Methods Appl Mech Eng 193:4763–4779

    Google Scholar 

  41. Belinha J, Dinis L (2007) Nonlinear analysis of plates and laminates using the element free Galerkin method. Compos Struct 78:337–350

    Google Scholar 

  42. Zhao X, Yang Y, Liew KM (2007) Geometrically nonlinear analysis of cylindrical shells using the element-free kp-Ritz method. Eng Anal Bound Elem 31:783–792

    Google Scholar 

  43. Watts G, Pradyumna S, Singha M (2017) Nonlinear analysis of quadrilateral composite plates using moving kriging based element free Galerkin method. Compos Struct 159:719–727

    Google Scholar 

  44. Roque C, Grasa J (2021) Geometrically nonlinear analysis of laminated composite plates using RBF-PS meshless method. Compos Struct 267:113830

    Google Scholar 

  45. Rodrigues D, Belinha J, Dinis L, Jorge RN (2021) A meshless study of antisymmetric angle-ply laminates using high-order shear deformation theories. Compos Struct 255:112795

    Google Scholar 

  46. Noroozi AR, Malekzadeh P (2023) Investigating nonlinear moving load responses of FG-GPLRC skew plates using meshfree radial point interpolation method. Compos Struct 308:116718

    Google Scholar 

  47. Liu WK, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Methods Appl Mech Eng 154:69–132

    MathSciNet  Google Scholar 

  48. Li S, Hao W, Liu WK (2000) Mesh-free simulations of shear banding in large deformation. Int J Solids Struct 37:7185–7206

    Google Scholar 

  49. Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25:102–116

    Google Scholar 

  50. Ren B, Li S (2010) Meshfree simulations of plugging failures in high-speed impacts. Comput Struct 88:909–923

    Google Scholar 

  51. Ren B, Li S (2012) Modeling and simulation of large-scale ductile fracture in plates and shells. Int J Solids Struct 49:2373–2393

    Google Scholar 

  52. Peng Y, Zhang A, Ming F (2018) A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis. Comput Mech 62:309–321

    MathSciNet  Google Scholar 

  53. Peng Y, Zhang A, Li S, Ming F (2019) A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures. Comput Mech 63:35–48

    MathSciNet  Google Scholar 

  54. Peng Y-X, Zhang A-M, Ming F-R, Wang S-P (2019) A meshfree framework for the numerical simulation of elasto-plasticity deformation of ship structure. Ocean Eng 192:106507

    Google Scholar 

  55. Peng Y-X, Zhang A-M, Ming F-R (2020) A 3D meshfree crack propagation algorithm for the dynamic fracture in arbitrary curved shell. Comput Methods Appl Mech Eng 367:113139

    MathSciNet  Google Scholar 

  56. Peng Y-X, Zhang A-M, Ming F-R (2021) Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM. Ocean Eng 222:108576

    Google Scholar 

  57. Zhang A-M, Li S-M, Cui P, Li S, Liu Y-L (2023) A unified theory for bubble dynamics. Phys Fluids 35:033323

    Google Scholar 

  58. Zhang A-M, Li S-M, Cui P, Li S, Liu Y-L (2023) Theoretical study on bubble dynamics under hybrid-boundary and multi-bubble conditions using the unified equation. Sci China Phys Mech Astron. http://engine.scichina.com/doi/10.1007/s11433-023-2204-x

  59. Hughes TJ, Liu WK (1981) Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26:331–362

    Google Scholar 

  60. Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155:273–305

    MathSciNet  Google Scholar 

  61. Zhang Q, Li S, Zhang AM, Peng Y, Yan J (2021) A peridynamic Reissner-Mindlin shell theory. Int J Numer Methods Eng 122:122–147

    MathSciNet  Google Scholar 

  62. Randles P, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408

    MathSciNet  Google Scholar 

  63. Zhang Q, Li S, Zhang A-M, Peng Y, Zhou K (2022) A nonlocal nonlinear stiffened shell theory with stiffeners modeled as geometrically-exact beams. Comput Methods Appl Mech Eng 397:115150

    MathSciNet  Google Scholar 

  64. Hardy SJ (2001) Composite benchmarks Nafems

  65. Lampeas G, Fotopoulos K (2015) Interlaminar stresses calculation using a stacked-shell finite element modeling approach. Int J Appl Mech 7:1550067

    Google Scholar 

  66. Shiri S, Naceur H (2013) Analysis of thin composite structures using an efficient hex-shell finite element. J Mech Sci Technol 27:3755–3763

    Google Scholar 

  67. Woelke P, Chan K-K, Daddazio R, Abboud N, Voyiadjis GZ (2012) Analysis of shear flexible layered isotropic and composite shells by “EPSA.” Shock Vib 19:459–475

    Google Scholar 

  68. Gorji M (1986) On large deflection of symmetric composite plates under static loading. Proc Inst Mech Eng C J Mech Eng Sci 200:13–19

    Google Scholar 

  69. Kant T, Kommineni J (1992) C0 finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory. Comput Struct 45:511–520

    Google Scholar 

  70. To CW, Wang B (1998) Transient responses of geometrically nonlinear laminated composite shell structures. Finite Elem Anal Des 31:117–134

    Google Scholar 

  71. Brank B, Damjanić F, Perić D (1995) On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells. Comput Mech 16:341–359

    Google Scholar 

  72. Parisch H (1991) An investigation of a finite rotation four node assumed strain shell element. Int J Numer Methods Eng 31:127–150

    Google Scholar 

  73. Stander N, Matzenmiller A, Ramm E (1989) An assessment of assumed strain methods in finite rotation shell analysis. Eng Comput

  74. Wang P, Chalal H, Abed-Meraim F (2017) Quadratic prismatic and hexahedral solid–shell elements for geometric nonlinear analysis of laminated composite structures. Compos Struct 172:282–296

    Google Scholar 

  75. Arciniega R, Reddy J (2007) Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Comput Methods Appl Mech Eng 196:1048–1073

    MathSciNet  Google Scholar 

  76. Sze K, Liu X, Lo S (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40:1551–1569

    Google Scholar 

  77. Klinkel S, Gruttmann F, Wagner W (1999) A continuum based three-dimensional shell element for laminated structures. Comput Struct 71:43–62

    Google Scholar 

  78. Kundu C, Sinha P (2006) Nonlinear transient analysis of laminated composite shells. J Reinf Plast Compos 25:1129–1147

    Google Scholar 

  79. Beheshti A, Ansari R (2023) Nonlinear dynamic analysis of unsymmetric layered composite shells. Compos Struct 307:116627

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (52088102, 51925904) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A-Man Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Zhang, AM., Peng, YX. et al. A meshfree orthotropic laminated shell model for geometrically nonlinear static and dynamic analysis. Comput Mech 73, 1033–1051 (2024). https://doi.org/10.1007/s00466-023-02399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02399-4

Keywords

Navigation