Skip to main content
Log in

Updated Lagrangian particle hydrodynamics (ULPH) modeling for free-surface fluid flows

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, we develop an accurate and stable Updated Lagrangian particle hydrodynamics (ULPH) modeling to simulate complicated free-surface fluid flows. Leveraging its inherent properties as a Lagrangian particle method, the ULPH has natural advantages in modeling free-surface flows. However, similar to other meshfree methods, ULPH is subject to numerical instabilities and non-physical pressure fluctuations when solving the Navier–Stokes equation in the explicit numerical scheme. Within the framework of the ULPH method, several innovative enhanced treatment techniques have been proposed and combined with other previouly developed methods to establish an ULPH single-phase flow model. The main novelties of these techniques are the derivation of the density diffusive term in the continuum equation inspired by \(\delta \)-SPH to eliminate pressure oscillations, and the proposal of a new free-surface search algorithm to determine the particles and their normal vectors at the free surface. The ULPH is a nonlocal fluid dynamics model, which is in fact a prototype of Peridynamics in fluid mechanics. Considering the nature of free-surface fluid flows, we strategically implement the diagonalization and renormalization of the shape tensor for particles located in close proximity to the free-surface region to improve the numerical stability of computations. Several complex free-surface flow benchmark examples have been simulated, which confirms that the enhanced treatment techniques can effectively capture the details of surface flow evolution and maintain long-term stability. Moreover, the qualitative and quantitative analyses of the results indicate that the proposed ULPH surface flow model is highly accurate and stable for simulating complex free-surface fluid flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Moukalled F, Mangani L, Darwish M (2016) The finite volume method. In: The finite volume method in computational fluid dynamics. Springer, pp 103–135

  2. Stelling G, Zijlema M (2003) An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int J Numer Methods Fluids 43(1):1–23

    Article  MathSciNet  Google Scholar 

  3. Hervouet JM (2007) Hydrodynamics of free surface flows: modelling with the finite element method. Wiley, Hoboken

    Book  Google Scholar 

  4. Heyns JA, Malan AG, Harms TM, Oxtoby OF (2013) A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach. J Comput Phys 240:145–157

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Li Z, Ji S, Duan H, Lan S, Zhang J, Lv P (2020) Coupling effect of wall slip and spanwise oscillation on drag reduction in turbulent channel flow. Phys Rev Fluids 5(12):124601

    Article  ADS  Google Scholar 

  6. Carrica P, Wilson R, Stern F (2007) An unsteady single-phase level set method for viscous free surface flows. Int J Numer Methods Fluids 53(2):229–256

    Article  MathSciNet  Google Scholar 

  7. Zhang Y, Zou Q, Greaves D (2010) Numerical simulation of free-surface flow using the level-set method with global mass correction. Int J Numer Methods Fluids 63(6):651–680

    Article  MathSciNet  Google Scholar 

  8. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  ADS  Google Scholar 

  9. Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  CAS  Google Scholar 

  10. Fang X-L, Colagrossi A, Wang P-P, Zhang A-M (2022) An accurate and robust axisymmetric SPH method based on Riemann solver with applications in ocean engineering. Ocean Eng 244:110369

    Article  Google Scholar 

  11. Zhang F, Zhang X, Sze KY, Lian Y, Liu Y (2017) Incompressible material point method for free surface flow. J Comput Phys 330:92–110

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Su Y-C, Tao J, Jiang S, Chen Z, Lu J-M (2020) Study on the fully coupled thermodynamic fluid-structure interaction with the material point method. Comput Part Mech 7:225–240

    Article  Google Scholar 

  13. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Article  ADS  CAS  Google Scholar 

  14. Khayyer A, Gotoh H (2011) Enhancement of stability and accuracy of the moving particle semi-implicit method. J Comput Phys 230(8):3093–3118

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Liu W, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    Article  MathSciNet  Google Scholar 

  16. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  ADS  Google Scholar 

  17. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  ADS  Google Scholar 

  18. He F, Zhang H, Huang C, Liu M (2022) A stable SPH model with large CFL numbers for multi-phase flows with large density ratios. J Comput Phys 453:110944

    Article  MathSciNet  Google Scholar 

  19. Marrone S, Bouscasse B, Colagrossi A, Antuono M (2012) Study of ship wave breaking patterns using 3D parallel SPH simulations. Comput Fluids 69:54–66

    Article  MathSciNet  Google Scholar 

  20. Zhang A-M, Li S-M, Cui P, Li S, Liu Y-L (2023) A unified theory for bubble dynamics. Phys Fluids 35:033323

    Article  ADS  CAS  Google Scholar 

  21. Hasanpour A, Istrati D, Buckle I (2021) Coupled SPH-FEM modeling of tsunami-borne large debris flow and impact on coastal structures. J Mar Sci Eng 9(10):1068

    Article  Google Scholar 

  22. Meng Z, Zhang A, Yan J, Wang P, Khayyer A (2022) A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method. Comput Methods Appl Mech Eng 390:114522

    Article  ADS  MathSciNet  Google Scholar 

  23. Jandaghian M, Shakibaeinia A (2020) An enhanced weakly-compressible MPS method for free-surface flows. Comput Methods Appl Mech Eng 360:112771

    Article  ADS  MathSciNet  Google Scholar 

  24. Jandaghian M, Krimi A, Zarrati AR, Shakibaeinia A (2021) Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques. J Comput Phys 434:110202

    Article  MathSciNet  Google Scholar 

  25. Matsunaga T, Koshizuka S (2022) Stabilized LSMPS method for complex free-surface flow simulation. Comput Methods Appl Mech Eng 389:114416

    Article  ADS  MathSciNet  Google Scholar 

  26. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  ADS  MathSciNet  Google Scholar 

  27. Li J, Hamamoto Y, Liu Y, Zhang X (2014) Sloshing impact simulation with material point method and its experimental validations. Comput Fluids 103:86–99

    Article  MathSciNet  Google Scholar 

  28. Song Y, Liu Y, Zhang X (2020) A transport point method for complex flow problems with free surface. Comput Part Mech 7(2):377–391

    Article  Google Scholar 

  29. Tu Q, Li S (2017) An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids. J Comput Phys 348:493–513

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  Google Scholar 

  31. Madenci E, Oterkus E (2013) Peridynamic theory. In: Peridynamic theory and its applications. Springer, pp 19–43

  32. Lai X, Li S, Yan J, Liu L, Zhang A-M (2022) Multiphase large-eddy simulations of human cough jet development and expiratory droplet dispersion. J Fluid Mech 942:A12

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. Yan J, Li S, Kan X, Zhang A-M, Lai X (2020) Higher-order nonlocal theory of Updated Lagrangian particle hydrodynamics (ULPH) and simulations of multiphase flows. Comput Methods Appl Mech Eng 368:113176

    Article  ADS  MathSciNet  Google Scholar 

  34. Ren H, Zhuang X, Rabczuk T (2020) A higher order nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng 367:113132

    Article  ADS  MathSciNet  Google Scholar 

  35. Yu H, Li S (2021) On approximation theory of nonlocal differential operators. Int J Numer Methods Eng 122(23):6984–7012

    Article  MathSciNet  Google Scholar 

  36. Kan X, Yan J, Li S, Zhang A (2021) On differences and comparisons of peridynamic differential operators and nonlocal differential operators. Comput Mech 68(6):1349–1367

    Article  MathSciNet  Google Scholar 

  37. Yan J, Li S, Zhang A-M, Kan X, Sun P-N (2019) Updated Lagrangian particle hydrodynamics (ULPH) modeling and simulation of multiphase flows. J Comput Phys 393:406–437

    Article  ADS  MathSciNet  CAS  Google Scholar 

  38. Liu R, Yan J, Li S (2020) Modeling and simulation of ice-water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics. Comput Part Mech 7(2):241–255

    Article  Google Scholar 

  39. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549

    Article  ADS  MathSciNet  CAS  Google Scholar 

  41. Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) \(\delta \)-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200(13–16):1526–1542

    Article  ADS  MathSciNet  Google Scholar 

  42. Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228(18):6703–6725

    Article  ADS  MathSciNet  Google Scholar 

  43. Yan J, Li S, Kan X, Zhang A-M, Liu L (2021) Updated Lagrangian particle hydrodynamics (ULPH) modeling of solid object water entry problems. Comput Mech 67(6):1685–1703

    Article  MathSciNet  Google Scholar 

  44. Sun P, Colagrossi A, Marrone S, Zhang A (2017) The \(\delta \)plus-SPH model: simple procedures for a further improvement of the SPH scheme. Comput Methods Appl Mech Eng 315:25–49

    Article  ADS  MathSciNet  Google Scholar 

  45. Macia Lang F, Souto Iglesias A, Antuono M, Colagrossi A (2011) Benefits of using a Wendland kernel for free-surface flows. In: 6th ERCOFTAC SPHERIC Workshop on SPH Applications

  46. Sun P, Ming F, Zhang A (2015) Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Eng 98:32–49

    Article  Google Scholar 

  47. Zhang C, Hu X, Adams NA (2017) A weakly compressible SPH method based on a low-dissipation Riemann solver. J Comput Phys 335:605–620

    Article  ADS  MathSciNet  Google Scholar 

  48. Wang P-P, Meng Z-F, Zhang A-M, Ming F-R, Sun P-N (2019) Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 357:112580

  49. Marrone S, Colagrossi A, Le Touzé D, Graziani G (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229(10):3652–3663

    Article  ADS  CAS  Google Scholar 

  50. Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561

    Article  MathSciNet  CAS  Google Scholar 

  51. Le Touzé D, Colagrossi A, Colicchio G, Greco M (2013) A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces. Int J Numer Methods Fluids 73(7):660–691

    Article  MathSciNet  Google Scholar 

  52. Krimi A, Jandaghian M, Shakibaeinia A (2020) A WCSPH particle shifting strategy for simulating violent free surface flows. Water 12(11):3189

    Article  Google Scholar 

  53. Colagrossi A (2005) A meshless Lagrangian method for free-surface and interface flows with fragmentation. These, Universita di Roma

  54. Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492

    Article  ADS  MathSciNet  Google Scholar 

  55. Shao J, Li H, Liu G, Liu M (2012) An improved SPH method for modeling liquid sloshing dynamics. Comput Struct 100:18–26

    Article  Google Scholar 

  56. Zhang Z, Liu M (2018) A decoupled finite particle method for modeling incompressible flows with free surfaces. Appl Math Model 60:606–633

    Article  MathSciNet  Google Scholar 

  57. Rezavand M, Zhang C, Hu X (2020) A weakly compressible SPH method for violent multi-phase flows with high density ratio. J Comput Phys 402:109092

    Article  MathSciNet  CAS  Google Scholar 

  58. You Y, Khayyer A, Zheng X, Gotoh H, Ma Q (2021) Enhancement of \(\delta \)-SPH for ocean engineering applications through incorporation of a background mesh scheme. Appl Ocean Res 110:102508

    Article  Google Scholar 

  59. Faltinsen OM, Rognebakke OF, Lukovsky IA, Timokha AN (2000) Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J Fluid Mech 407:201–234

    Article  ADS  MathSciNet  Google Scholar 

  60. Reichl P, Hourigan K, Thompson MC (2005) Flow past a cylinder close to a free surface. J Fluid Mech 533:269–296

    Article  ADS  Google Scholar 

  61. Bouscasse B, Colagrossi A, Marrone S, Souto-Iglesias A (2017) SPH modelling of viscous flow past a circular cylinder interacting with a free surface. Comput Fluids 146:190–212

    Article  MathSciNet  Google Scholar 

  62. Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B/Fluids 34:35–46

    Article  MathSciNet  Google Scholar 

  63. Colagrossi A, Nikolov G, Durante D, Marrone S, Souto-Iglesias A (2019) Viscous flow past a cylinder close to a free surface: benchmarks with steady, periodic and metastable responses, solved by meshfree and mesh-based schemes. Comput Fluids 181:345–363

    Article  MathSciNet  Google Scholar 

  64. Lobovskỳ L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A (2014) Experimental investigation of dynamic pressure loads during dam break. J Fluids Struct 48:407–434

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supports provided by the National Natural Science Foundation of China (Nos. 12293000, 12293001, 11988102, 12202011 and 12172006), China Postdoctoral Science Foundation (No. 2022M710190) and Laoshan Laboratory (No. LSKJ202200500). Moreover, we would like to thank Dr. Pingping Wang for the discussions and calculation of CPU computation times of different SPH methods. These supports are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Li, S., Kan, X. et al. Updated Lagrangian particle hydrodynamics (ULPH) modeling for free-surface fluid flows. Comput Mech 73, 297–316 (2024). https://doi.org/10.1007/s00466-023-02368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02368-x

Keywords

Navigation