Skip to main content

Advertisement

Log in

A nonlocal energy-informed neural network based on peridynamics for elastic solids with discontinuities

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a nonlocal energy-informed neural network is proposed to deal with elastic solids containing discontinuities by considering the long-range interactions of material points. First, the solution to peridynamic equilibrium equation is converted to an variational energy minimization problem based on principle of virtual work, which automatically satisfies the zero-traction boundary conditions and avoids the introduction of artificial damping. Furthermore, the energetic representation of behavior of physical system can be tractable as the loss function for deep learning neural network. This allows to approximate the solution of the system by the active machine learning community. As the basic technique in deep learning, automatic differentiation is capable to evaluate derivatives for smooth functions, but it is prone to singularity due to the presence of discontinuities. To address this limitation, spatial integration is employed in the proposed neural network to evaluate the strain energy of the system rather than the spatial derivatives of displacement fields calculated by automatic differentiation. Moreover, the initial cracks can be directly introduced in the constitutive model without the explicit definition of crack surfaces. The accuracy and efficiency of the proposed neural network is validated by conducting several mechanical problems with or without discontinuities. More importantly, the proposed neural network is capable to capture the jump discontinuities at the crack surfaces, where the neural network with automatic differentiation is hard to address. Additionally, the convergence of the proposed neural network and the comparison of two widely used activation functions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hong D, Gao L, Yokoya N et al (2021) More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans Geosci Remote Sens 59:4340–4354. https://doi.org/10.1109/TGRS.2020.3016820

    Article  ADS  Google Scholar 

  2. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: a brief review. Comput Intell Neurosci 2018:7068349. https://doi.org/10.1155/2018/7068349

    Article  PubMed  PubMed Central  Google Scholar 

  3. Minh Nguyen-Thanh V, Trong Khiem Nguyen L, Rabczuk T, Zhuang X (2020) A surrogate model for computational homogenization of elastostatics at finite strain using high-dimensional model representation-based neural network. Int J Numer Methods Eng 121:4811–4842. https://doi.org/10.1002/nme.6493

    Article  MathSciNet  Google Scholar 

  4. Yu XL, Zhou XP (2022) A data-driven bond-based peridynamic model derived from group method of data handling neural network with genetic algorithm. Int J Numer Methods Eng 123:5618–5651. https://doi.org/10.1002/nme.7081

    Article  MathSciNet  Google Scholar 

  5. Bekar AC, Madenci E (2021) Peridynamics enabled learning partial differential equations. J Comput Phys 434:110193. https://doi.org/10.1016/j.jcp.2021.110193

    Article  MathSciNet  Google Scholar 

  6. Wang YT, Zhang X, Liu XS (2021) Machine learning approaches to rock fracture mechanics problems: Mode-I fracture toughness determination. Eng Fract Mech 253:107890. https://doi.org/10.1016/j.engfracmech.2021.107890

    Article  Google Scholar 

  7. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707. https://doi.org/10.1016/j.jcp.2018.10.045

    Article  ADS  MathSciNet  Google Scholar 

  8. Raissi M, Karniadakis GE (2018) Hidden physics models: Machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141. https://doi.org/10.1016/j.jcp.2017.11.039

    Article  ADS  MathSciNet  Google Scholar 

  9. Güneş Baydin A, Pearlmutter BA, Andreyevich Radul A, Mark Siskind J (2018) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18:1–43

    MathSciNet  Google Scholar 

  10. Margossian CCC (2019) A review of automatic differentiation and its efficient implementation. Wiley Interdiscip Rev Data Min Knowl Discov 9:e1305. https://doi.org/10.1002/widm.1305

    Article  Google Scholar 

  11. Fournier DA, Skaug HJ, Ancheta J et al (2012) AD Model Builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249. https://doi.org/10.1080/10556788.2011.597854

    Article  MathSciNet  Google Scholar 

  12. He M, Zhang Z, Li N (2021) Deep convolutional neural network-based method for strength parameter prediction of jointed rock mass using drilling logging data. Int J Geomech 21:04021111. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002074

    Article  Google Scholar 

  13. Wu J, Yin X, Xiao H (2018) Seeing permeability from images: fast prediction with convolutional neural networks. Sci Bull 63:1215–1222. https://doi.org/10.1016/J.SCIB.2018.08.006

    Article  Google Scholar 

  14. Shen S, Lu H, Sadoughi M et al (2021) A physics-informed deep learning approach for bearing fault detection. Eng Appl Artif Intell 103:104295. https://doi.org/10.1016/j.engappai.2021.104295

    Article  Google Scholar 

  15. Yang L, Zhang D, Karniadakis GEM (2020) Physics-informed generative adversarial networks for stochastic differential equations. SIAM J Sci Comput 42:A292–A317. https://doi.org/10.1137/18M1225409

    Article  MathSciNet  Google Scholar 

  16. Borkowski L, Sorini C, Chattopadhyay A (2022) Recurrent neural network-based multiaxial plasticity model with regularization for physics-informed constraints. Comput Struct 258:106678. https://doi.org/10.1016/j.compstruc.2021.106678

    Article  Google Scholar 

  17. Viana FAC, Nascimento RG, Dourado A, Yucesan YA (2021) Estimating model inadequacy in ordinary differential equations with physics-informed neural networks. Comput Struct 245:106458. https://doi.org/10.1016/j.compstruc.2020.106458

    Article  Google Scholar 

  18. Ranade R, Hill C, Pathak J (2021) DiscretizationNet: a machine-learning based solver for Navier–Stokes equations using finite volume discretization. Comput Methods Appl Mech Eng 378:113722. https://doi.org/10.1016/j.cma.2021.113722

    Article  ADS  MathSciNet  Google Scholar 

  19. Gao H, Zahr MJ, Wang JX (2022) Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems. Comput Methods Appl Mech Eng 390:114502. https://doi.org/10.1016/j.cma.2021.114502

    Article  ADS  MathSciNet  Google Scholar 

  20. Waheed UB, Haghighat E, Alkhalifah T et al (2021) PINNeik: Eikonal solution using physics-informed neural networks. Comput Geosci 155:104833. https://doi.org/10.1016/j.cageo.2021.104833

    Article  Google Scholar 

  21. Jagtap AD, Kawaguchi K, Karniadakis GE (2020) Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J Comput Phys 404:109136. https://doi.org/10.1016/j.jcp.2019.109136

    Article  MathSciNet  Google Scholar 

  22. McGowan E, Gawade V, Guo W (2022) A physics-informed convolutional neural network with custom loss functions for porosity prediction in laser metal deposition. Sensors 22:494. https://doi.org/10.3390/S22020494

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pang G, Lu LU, Karniadakis GEM (2019) FPinns: Fractional physics-informed neural networks. SIAM J Sci Comput 41:A2603–A2626. https://doi.org/10.1137/18M1229845

    Article  MathSciNet  Google Scholar 

  24. Sukumar N, Srivastava A (2022) Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. Comput Methods Appl Mech Eng 389:114333. https://doi.org/10.1016/j.cma.2021.114333

    Article  ADS  MathSciNet  Google Scholar 

  25. Lu Y, Wang B, Zhao Y et al (2022) Physics-informed surrogate modeling for hydro-fracture geometry prediction based on deep learning. Energy 253:124139. https://doi.org/10.1016/j.energy.2022.124139

    Article  Google Scholar 

  26. Jagtap AD, Karniadakis GE (2020) Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun Comput Phys 28:2002–2041. https://doi.org/10.4208/CICP.OA-2020-0164

    Article  MathSciNet  Google Scholar 

  27. Sirignano J, Spiliopoulos K (2018) DGM: A deep learning algorithm for solving partial differential equations. J Comput Phys 375:1339–1364. https://doi.org/10.1016/j.jcp.2018.08.029

    Article  ADS  MathSciNet  Google Scholar 

  28. Karumuri S, Tripathy R, Bilionis I, Panchal J (2020) Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks. J Comput Phys 404:109120. https://doi.org/10.1016/j.jcp.2019.109120

    Article  MathSciNet  Google Scholar 

  29. Yang L, Meng X, Karniadakis GE (2021) B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J Comput Phys 425:109913. https://doi.org/10.1016/J.JCP.2020.109913

    Article  MathSciNet  Google Scholar 

  30. Gao H, Sun L, Wang JX (2021) Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels. Phys Fluids 33:073603. https://doi.org/10.1063/5.0054312

    Article  ADS  CAS  Google Scholar 

  31. Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3:422–440. https://doi.org/10.1038/S42254-021-00314-5

    Article  Google Scholar 

  32. Cai S, Mao Z, Wang Z et al (2021) Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech Sin Xuebao 37:1727–1738. https://doi.org/10.1007/S10409-021-01148-1

    Article  ADS  MathSciNet  Google Scholar 

  33. Haghighat E, Raissi M, Moure A et al (2021) A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput Methods Appl Mech Eng 379:113741. https://doi.org/10.1016/j.cma.2021.113741

    Article  ADS  MathSciNet  Google Scholar 

  34. Abueidda DW, Lu Q, Koric S (2021) Meshless physics-informed deep learning method for three-dimensional solid mechanics. Int J Numer Methods Eng 122:7182–7201

    Article  MathSciNet  Google Scholar 

  35. Cai S, Wang Z, Wang S et al (2021) Physics-informed neural networks for heat transfer problems. J Heat Transf 143:060801. https://doi.org/10.1115/1.4050542

    Article  CAS  Google Scholar 

  36. Zhu Q, Liu Z, Yan J (2021) Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech 67:619–635. https://doi.org/10.1007/s00466-020-01952-9

    Article  MathSciNet  Google Scholar 

  37. Hu WF, Lin TS, Lai MC (2022) A discontinuity capturing shallow neural network for elliptic interface problems. J Comput Phys 469:111576. https://doi.org/10.1016/j.jcp.2022.111576

    Article  MathSciNet  Google Scholar 

  38. Samaniego E, Anitescu C, Goswami S et al (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790. https://doi.org/10.1016/j.cma.2019.112790

    Article  ADS  MathSciNet  Google Scholar 

  39. Nguyen-Thanh VM, Zhuang X, Rabczuk T (2020) A deep energy method for finite deformation hyperelasticity. Eur J Mech A/Solids 80:103874. https://doi.org/10.1016/j.euromechsol.2019.103874

    Article  MathSciNet  Google Scholar 

  40. Nguyen-Thanh VM, Anitescu C, Alajlan N et al (2021) Parametric deep energy approach for elasticity accounting for strain gradient effects. Comput Methods Appl Mech Eng 386:114096. https://doi.org/10.1016/j.cma.2021.114096

    Article  ADS  MathSciNet  Google Scholar 

  41. Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mech 106:102447. https://doi.org/10.1016/j.tafmec.2019.102447

    Article  Google Scholar 

  42. Zheng B, Li T, Qi H et al (2022) Physics-informed machine learning model for computational fracture of quasi-brittle materials without labelled data. Int J Mech Sci 223:107282. https://doi.org/10.1016/j.ijmecsci.2022.107282

    Article  Google Scholar 

  43. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  ADS  MathSciNet  Google Scholar 

  44. Jenabidehkordi A, Fu X, Rabczuk T (2022) An open source peridynamics code for dynamic fracture in homogeneous and heterogeneous materials. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2022.103124

    Article  Google Scholar 

  45. Tian DL, Zhou XP (2022) A novel kinematic-constraint-inspired non-ordinary state-based peridynamics. Appl Math Model 109:709–740. https://doi.org/10.1016/j.apm.2022.05.025

    Article  MathSciNet  Google Scholar 

  46. Feng K, Zhou XP (2022) Peridynamic simulation of the mechanical responses and fracturing behaviors of granite subjected to uniaxial compression based on CT heterogeneous data. Eng Comput. https://doi.org/10.1007/S00366-021-01549-7

    Article  Google Scholar 

  47. Han F, Liu S, Lubineau G (2021) A dynamic hybrid local/nonlocal continuum model for wave propagation. Comput Mech 67:385–407. https://doi.org/10.1007/s00466-020-01938-7

    Article  MathSciNet  Google Scholar 

  48. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026

    Article  Google Scholar 

  49. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Methods Eng 108:1451–1476. https://doi.org/10.1002/nme.5257

    Article  MathSciNet  Google Scholar 

  50. Pasetto M, Leng Y, Chen J-S et al (2018) A reproducing kernel enhanced approach for peridynamic solutions. Comput Methods Appl Mech Eng 340:1044–1078. https://doi.org/10.1016/j.cma.2018.05.010

    Article  ADS  MathSciNet  Google Scholar 

  51. Shojaei A, Hermann A, Cyron CJ et al (2022) A hybrid meshfree discretization to improve the numerical performance of peridynamic models. Comput Methods Appl Mech Eng 391:114544. https://doi.org/10.1016/j.cma.2021.114544

    Article  ADS  MathSciNet  Google Scholar 

  52. Seleson P, Littlewood DJ (2016) Convergence studies in meshfree peridynamic simulations. Comput Math with Appl 71:2432–2448. https://doi.org/10.1016/j.camwa.2015.12.021

    Article  MathSciNet  Google Scholar 

  53. Li Z, Huang D, Rabczuk T, Ren H (2023) Weak form of bond-associated peridynamic differential operator for thermo-mechanical analysis of orthotropic structures. Eur J Mech A/Solids 99:104927. https://doi.org/10.1016/j.euromechsol.2023.104927

    Article  MathSciNet  Google Scholar 

  54. Yu H, Sun Y (2021) Bridging the gap between local and nonlocal numerical methods—a unified variational framework for non-ordinary state-based peridynamics. Comput Methods Appl Mech Eng 384:113962. https://doi.org/10.1016/j.cma.2021.113962

    Article  ADS  MathSciNet  Google Scholar 

  55. Haghighat E, Bekar AC, Madenci E, Juanes R (2021) A nonlocal physics-informed deep learning framework using the peridynamic differential operator. Comput Methods Appl Mech Eng 385:114012. https://doi.org/10.1016/j.cma.2021.114012

    Article  ADS  MathSciNet  Google Scholar 

  56. Silling SA, Epton M, Weckner O et al (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184. https://doi.org/10.1007/s10659-007-9125-1

    Article  MathSciNet  Google Scholar 

  57. Seleson P, Parks ML (2011) On the role of the influence function in the peridynamic theory. Int J Multiscale Comput Eng 9:689–706. https://doi.org/10.1615/IntJMultCompEng.2011002527

    Article  Google Scholar 

  58. Wang Y, Zhou X, Wang Y, Shou Y (2018) A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct 134:89–115. https://doi.org/10.1016/j.ijsolstr.2017.10.022

    Article  Google Scholar 

  59. Zhou XP, Yu XL (2021) A vector form conjugated-shear bond-based peridynamic model for crack initiation and propagation in linear elastic solids. Eng Fract Mech 256:107944. https://doi.org/10.1016/j.engfracmech.2021.107944

    Article  Google Scholar 

  60. Zhu QZ, Ni T (2017) Peridynamic formulations enriched with bond rotation effects. Int J Eng Sci 121:118–129. https://doi.org/10.1016/j.ijengsci.2017.09.004

    Article  MathSciNet  Google Scholar 

  61. Diana V, Casolo S (2019) A bond-based micropolar peridynamic model with shear deformability: elasticity, failure properties and initial yield domains. Int J Solids Struct 160:201–231. https://doi.org/10.1016/j.ijsolstr.2018.10.026

    Article  Google Scholar 

  62. Li X, Yu Y, Mu Z, Hu YL (2021) Meso-scale modeling for effective properties in continuous fiber-reinforced composites by state-based peridynamics. Acta Mech Solida Sin 34:729–742. https://doi.org/10.1007/S10338-021-00239-7

    Article  Google Scholar 

  63. Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mech 53:194–204. https://doi.org/10.1016/j.tafmec.2010.08.001

    Article  Google Scholar 

  64. Li H, Zhang H, Zheng Y, Zhang L (2016) A peridynamic model for the nonlinear static analysis of truss and tensegrity structures. Comput Mech 57:843–858. https://doi.org/10.1007/s00466-016-1264-4

    Article  MathSciNet  Google Scholar 

  65. Sadd MH (2009) Elasticity: theory, applications, and numerics. Elsevier Inc., New York

    Google Scholar 

  66. Nguyen LTK, Aydin RC, Cyron CJ (2022) Accelerating the distance-minimizing method for data-driven elasticity with adaptive hyperparameters. Comput Mech 70:621–638. https://doi.org/10.1007/s00466-022-02183-w

    Article  MathSciNet  Google Scholar 

  67. Abadi M, Barham P, Chen J et al (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX symposium on operating systems design and implementation, OSDI 2016. USENIX Association, pp 265–283

  68. Paszke A, Gross S, Massa F et al (2019) PyTorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8024–8035

    Google Scholar 

  69. Cuomo S, Di Cola VS, Giampaolo F et al (2022) Scientific machine learning through physics-informed neural networks: where we are and what’s next. J Sci Comput 92:88. https://doi.org/10.1007/s10915-022-01939-z

    Article  MathSciNet  Google Scholar 

  70. Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd international conference on learning representations ICLR 2015—conference track proceedings

  71. Dean J, Corrado GS, Monga R et al (2012) Large scale distributed deep networks. Adv Neural Inf Process Syst 2:1223–1231

    Google Scholar 

  72. Yu X-L, Zhou X-P (2023) A nonlocal energy-informed neural network for isotropic elastic solids with cracks under thermomechanical loads. Int J Numer Methods Eng. https://doi.org/10.1002/nme.7296

    Article  MathSciNet  Google Scholar 

  73. Lu L, Meng X, Mao Z, Karniadakis GE (2021) DeepXDE: A deep learning library for solving differential equations. SIAM Rev 63:208–228. https://doi.org/10.1137/19M1274067

    Article  MathSciNet  Google Scholar 

  74. Le QV, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61:499–518. https://doi.org/10.1007/s00466-017-1469-1

    Article  MathSciNet  Google Scholar 

  75. Seleson P (2014) Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations. Comput Methods Appl Mech Eng 282:184–217. https://doi.org/10.1016/j.cma.2014.06.016

    Article  ADS  MathSciNet  Google Scholar 

  76. Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250. https://doi.org/10.1016/j.cma.2014.01.002

    Article  ADS  MathSciNet  Google Scholar 

  77. Yaghoobi A, Chorzepa MG (2017) Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics. Comput Struct 188:63–79. https://doi.org/10.1016/j.compstruc.2017.03.019

    Article  Google Scholar 

  78. Mikata Y (2023) Analytical solutions of peristatics and peridynamics for 3D isotropic materials. Eur J Mech A/Solids. https://doi.org/10.1016/j.euromechsol.2023.104978

    Article  MathSciNet  Google Scholar 

  79. Anderson TL (2005) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

The research has been supported by the National Natural Science Foundation of China (51839009 & 52027814). The authors also wish to thank the anonymous reviewer(s) for their valuable suggestions to the promotion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Zhou.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XL., Zhou, XP. A nonlocal energy-informed neural network based on peridynamics for elastic solids with discontinuities. Comput Mech 73, 233–255 (2024). https://doi.org/10.1007/s00466-023-02365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02365-0

Keywords

Navigation