Skip to main content

Advertisement

Log in

A novel node-to-segment algorithm in smoothed finite element method for contact problems

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Studies have found that the widely-used one-pass node-to-segment (NTS) algorithm for contacts fails to pass the contact patch test. Solution errors at the contacting surfaces resulting from the classical NTS algorithm do not necessarily decrease with the mesh refinement. This paper presents a novel NTS with the explicit dynamic formulation in detail, which can pass the contact patch test. The proposed algorithm consists of the following technical ingredient: (1) A weighted smoothing technique is developed to accurately evaluate contact forces for contact problems; (2) The central difference time integration scheme is utilized for efficiency, to save storage space, and to avoid the use of tangent stiffness matrix; (3) the penalty method is used for ease in implementation; (4) Our NTS algorithm is coded in the smoothed finite element method (S-FEM). Two S-FEM models are adopted for the proposed NTS algorithm: the node-based smoothed finite element method (NS-FEM) and the edge-based smoothed finite element method (ES-FEM) so that automatically generable triangular elements can be used for excellent adaptation. Numerical examples of the proposed algorithm are presented to examine the performance. It is found that the present algorithm alleviates the nonuniformity of contact pressure on both flat and curve boundaries. ES-FEM and NS-FEM combined with the new NTS algorithm have higher convergence rates. In addition, the ES-FEM has more accurate displacement and stress solutions at the same grid level. NS-FEM can even provide an upper bound solution in the strain energy for contact problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Liu GR, Quek SS (2013) The finite element method: a practical course. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  3. Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924. https://doi.org/10.1002/NME.1620090410

    Article  Google Scholar 

  4. Taylor RL, Papodopoulos P (1991) On a patch test for contact problems in two dimensions. In: Wagner W, P W (eds) Computational methods in nonlinear mechanics. Springer, Berlin, pp 690–702

    Google Scholar 

  5. Farah P, Popp A, Wall WA (2015) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55:209–228. https://doi.org/10.1007/s00466-014-1093-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Dias APC, Proenca SPB, Bittencourt ML (2019) High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces. Comput Mech 64:85–112. https://doi.org/10.1007/s00466-018-1658-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun X, Yang H, Li S, Cui XY (2022) Stable node-based smoothed finite element method for 3D contact problems. Comput Mech 69:787–804. https://doi.org/10.1007/s00466-021-02114-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Duong TX, De Lorenzis L, Sauer RA (2019) A segmentation-free isogeometric extended mortar contact method. Comput Mech 63:383–407. https://doi.org/10.1007/s00466-018-1599-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Hughes TJR, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8:249–276. https://doi.org/10.1016/0045-7825(76)90018-9

    Article  MATH  Google Scholar 

  10. Bathe K-J, Chaudhary A (1985) A solution method for planar and axisymmetric contact problems. Int J Numer Methods Eng 21:65–88. https://doi.org/10.1002/NME.1620210107

    Article  MATH  Google Scholar 

  11. Hallquist JO, Goudreau GL, Benson DJ (1985) Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 51:107–137. https://doi.org/10.1016/0045-7825(85)90030-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Wriggers P, Simo JC (1985) A note on tangent stiffness for fully nonlinear contact problems. Commun Appl Numer Methods 1:199–203. https://doi.org/10.1002/CNM.1630010503

    Article  MATH  Google Scholar 

  13. Wriggers P, Van TV, Stein E (1990) Finite element formulation of large deformation impact-contact problems with friction. Comput Struct 37:319–331. https://doi.org/10.1016/0045-7949(90)90324-U

    Article  MATH  Google Scholar 

  14. Papadopoulos P, Jones RE, Solberg JM (1995) A novel finite element formulation for frictionless contact problems. Int J Numer Methods Eng 38:2603–2617. https://doi.org/10.1002/NME.1620381507

    Article  MathSciNet  MATH  Google Scholar 

  15. Stupkiewicz S (2001) Extension of the node-to-segment contact element for surface-expansion-dependent contact laws. Int J Numer Methods Eng 50:739–759. https://doi.org/10.1002/1097-0207(20010130)50:3%3c739::AID-NME49%3e3.0.CO;2-G

    Article  MATH  Google Scholar 

  16. Zavarise G, De Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416. https://doi.org/10.1002/NME.2559

    Article  MATH  Google Scholar 

  17. El-Abbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79:1473–1486. https://doi.org/10.1016/s0045-7949(01)00048-7

    Article  Google Scholar 

  18. Padmanabhan V, Laursen TA (2001) A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem Anal Des 37:173–198. https://doi.org/10.1016/S0168-874X(00)00029-9

    Article  MATH  Google Scholar 

  19. Wriggers P, Krstulovic-Opara L, Korelc J (2001) Smooth C1-interpolations for two-dimensional frictional contact problems. Int J Numer Methods Eng 51:1469–1495. https://doi.org/10.1002/nme.227

    Article  MATH  Google Scholar 

  20. Puso MA, Laursen TA (2002) A 3D contact smoothing method using Gregory patches. Int J Numer Methods Eng 54:1161–1194. https://doi.org/10.1002/nme.466

    Article  MathSciNet  MATH  Google Scholar 

  21. De Lorenzis L, Temizer İ, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300. https://doi.org/10.1002/nme.3159

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200:726–741. https://doi.org/10.1016/j.cma.2010.10.001

    Article  MathSciNet  MATH  Google Scholar 

  23. Temizer İ, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112. https://doi.org/10.1016/j.cma.2010.11.020

    Article  MathSciNet  MATH  Google Scholar 

  24. Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) A numerical model for thermomechanical contact based on microscopic interface laws. Mech Res Commun 19:173–182. https://doi.org/10.1016/0093-6413(92)90062-F

    Article  MATH  Google Scholar 

  25. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648. https://doi.org/10.1002/NME.489

    Article  MATH  Google Scholar 

  26. Gimperlein H, Meyer F, Ozdemir C, Stephan EP (2018) Time domain boundary elements for dynamic contact problems. Comput Methods Appl Mech Eng 333:147–175. https://doi.org/10.1016/j.cma.2018.01.025

    Article  MathSciNet  MATH  Google Scholar 

  27. Taylor RL, Zienkiewicz OC (2013) The finite element method for solid and structural mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  28. Liu GR (2010) A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory. Int J Numer Methods Eng 81:1093–1126. https://doi.org/10.1002/NME.2719

    Article  MATH  Google Scholar 

  29. Liu GR (2010) A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems. Int J Numer Methods Eng 81:1127–1156. https://doi.org/10.1002/NME.2720

    Article  MATH  Google Scholar 

  30. Liu GR (2008) A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 5:199–236. https://doi.org/10.1142/s0219876208001510

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87:14–26. https://doi.org/10.1016/j.compstruc.2008.09.003

    Article  Google Scholar 

  32. Yang H, Cui XY, Li S, Bie YH (2019) A stable node-based smoothed finite element method for metal forming analysis. Comput Mech 63:1147–1164. https://doi.org/10.1007/s00466-018-1641-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Choi J-H, Sim G-D, Lee B-C (2020) A four-node C-0 tetrahedral element based on the node-based smoothing technique for the modified couple stress theory. Comput Mech 65:1493–1508. https://doi.org/10.1007/s00466-020-01831-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320:1100–1130. https://doi.org/10.1016/j.jsv.2008.08.027

    Article  Google Scholar 

  35. Cui X, Liu G-R, Li G-y, Zhang G, Zheng G (2010) Analysis of plates and shells using an edge-based smoothed finite element method. Comput Mech 45:141–156. https://doi.org/10.1007/s00466-009-0429-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu M, Gao G, Zhu H, Jiang C, Liu G (2021) A cell-based smoothed finite element method (CS-FEM) for three-dimensional incompressible laminar flows using mixed wedge-hexahedral element. Eng Anal Bound Elem 133:269–285. https://doi.org/10.1016/j.enganabound.2021.09.008

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu S-W, Jiang C, Jiang C, Niu R-P, Wan D-T, Liu GR (2021) A unified-implementation of smoothed finite element method (UI-SFEM) for simulating biomechanical responses of multi-materials orthodontics. Comput Mech 67:541–565. https://doi.org/10.1007/s00466-020-01947-6

    Article  MathSciNet  MATH  Google Scholar 

  38. Huo SH, Sun C, Liu GR, Ao RH (2021) Bone remodeling analysis for a swine skull at continuous scale based on the smoothed finite element method. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2021.104444

    Article  Google Scholar 

  39. Guan W, Bhowmick S, Gao G, Liu G-R (2021) A phase-field modelling for 3D fracture in elasto-plastic solids based on the cell-based smoothed finite element method. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2021.107920

    Article  Google Scholar 

  40. Wu S-W, Jiang C, Jiang C, Liu G-R (2020) A selective smoothed finite element method with visco-hyperelastic constitutive model for analysis of biomechanical responses of brain tissues. Int J Numer Methods Eng 121:5123–5149. https://doi.org/10.1002/nme.6515

    Article  MathSciNet  Google Scholar 

  41. Wu S-W, Jiang C, Liu GR, Wan D-T, Jiang C (2022) An n -sided polygonal selective smoothed finite element method for nearly incompressible visco-hyperelastic soft materials. Appl Math Model 107:398–428. https://doi.org/10.1016/j.apm.2022.02.026

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou X-W, Liu F-T, Yin Z-Y, Jin Y-F, Zhang C-B (2022) A mixed constant-stress smoothed-strain element with a cubic bubble function for elastoplastic analysis using second-order cone programming. Comput Geotech. https://doi.org/10.1016/j.compgeo.2022.104701

    Article  Google Scholar 

  43. Wu S-W, Liu GR, Jiang C, Liu X, Liu K, Wan D-T, Yue J-H (2023) Arbitrary polygon mesh for elastic and elastoplastic analysis of solids using smoothed finite element method. Comput Methods Appl Mech Eng 405:115874. https://doi.org/10.1016/j.cma.2022.115874

    Article  MathSciNet  MATH  Google Scholar 

  44. Yue J, Liu G-R, Li M, Niu R (2018) A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation. Int J Solids Struct 141:110–126. https://doi.org/10.1016/j.ijsolstr.2018.02.016

    Article  Google Scholar 

  45. Li Y, Zhang G, Liu GR, Huang YN, Zong Z (2013) A contact analysis approach based on linear complementarity formulation using smoothed finite element methods. Eng Anal Bound Elem 37:1244–1258. https://doi.org/10.1016/J.ENGANABOUND.2013.06.003

    Article  MathSciNet  MATH  Google Scholar 

  46. Kumar V, Metha R (2013) Impact simulations using smoothed finite element method. Int J Comput Methods 10:20. https://doi.org/10.1142/s0219876213500126

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu GR, Trung NT (2010) Smoothed finite element methods. CRC Press, Boca Raton

    Google Scholar 

  48. Garg S, Pant M (2018) Meshfree methods: a comprehensive review of applications. Int J Comput Methods 15:85. https://doi.org/10.1142/s0219876218300015

    Article  MathSciNet  MATH  Google Scholar 

  49. Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures nonlinear finite elements for continua and structures

  50. Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H (2010) A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput Methods Appl Mech Eng 199:3005–3027. https://doi.org/10.1016/j.cma.2010.06.017

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhong Z-H (1993) Finite element procedures for contact-impact problems. Oxford University Press, Oxford

    Google Scholar 

  52. Luenberger DG, Ye Y (1984) Linear and nonlinear programming. Springer, Berlin

    MATH  Google Scholar 

  53. Zavarise G, De Lorenzis L (2009) The node-to-segment algorithm for 2D frictionless contact: classical formulation and special cases. Comput Methods Appl Mech Eng 198:3428–3451. https://doi.org/10.1016/J.CMA.2009.06.022

    Article  MathSciNet  MATH  Google Scholar 

  54. Tur M, Giner E, Fuenmayor FJ, Wriggers P (2012) 2D contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247:1–14. https://doi.org/10.1016/J.CMA.2012.08.002

    Article  MathSciNet  MATH  Google Scholar 

  55. Xing W, Song C, Tin-Loi F (2018) A scaled boundary finite element based node-to-node scheme for 2D frictional contact problems. Comput Methods Appl Mech Eng 333:114–146. https://doi.org/10.1016/J.CMA.2018.01.012

    Article  MathSciNet  MATH  Google Scholar 

  56. Popov VL (2010) Contact mechanics and friction. Springer, Berlin

    Book  MATH  Google Scholar 

  57. Feng H, Cui XY, Li GY, Feng SZ (2014) A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems. Comput Mech 53:859–876. https://doi.org/10.1007/s00466-013-0936-6

    Article  MathSciNet  MATH  Google Scholar 

  58. Chen G, Qian L, Ma J (2019) A gradient stable node-based smoothed finite element method for solid mechanics problems. Shock Vib. https://doi.org/10.1155/2019/8610790

    Article  Google Scholar 

Download references

Acknowledgements

This work is financial supported by the National Natural Science Foundation of China (Grant Nos. 11832011, 52275184 and 12002395), and Natural Science Foundation of Hebei Province (Grant No. E2022202132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengjiao Yu or Zirui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Liu, G.R., Huo, S.H. et al. A novel node-to-segment algorithm in smoothed finite element method for contact problems. Comput Mech 72, 1029–1057 (2023). https://doi.org/10.1007/s00466-023-02327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02327-6

Keywords

Navigation