Skip to main content
Log in

Field-enriched finite element method for simulating of three-dimensional crack propagation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the field-enriched finite element method is proposed for simulating three-dimensional crack propagation, in which the influences of three-dimensional crack on the physical fields of computational model are described by enriching the field variable on the nodes. Then, through a benchmark example, it is found that under different mesh densities, the convergence rate of the stress intensity factor and energy norm error obtained by the field-enriched finite element method is faster than that of the traditional finite element method. Moreover, the field-enriched finite element method can calculate the stress intensity factor which is basically close to the precision of the extended finite element method and the analytical solution. Finally, comparing with the other numerical results or experimental results on three numerical examples, it is found that the proposed method can effectively and accurately simulate the three-dimensional crack propagation process under different loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang YT, Tang XH, Zheng H, Liu QS, He L (2016) Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem 72:65–77

    Article  MathSciNet  MATH  Google Scholar 

  3. Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781

    Article  Google Scholar 

  4. Rizzo FJ (1967) An integral approach to boundary value problems of classical elastostatics. Q Appl Math 25:83–95

    Article  MATH  Google Scholar 

  5. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  6. Shi GH (1992) Modeling rock joints and blocks by manifold method. In: 33rd U.S. symposium on rock mechanics, USRMS, pp 639–648

  7. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  8. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  9. Francfort GA, Bourdin B, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    Article  MathSciNet  MATH  Google Scholar 

  10. Gürses E, Miehe C (2009) A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput Methods Appl Mech Eng 198:1413–1428

    Article  MATH  Google Scholar 

  11. Paluszny A, Zimmerman RW (2011) Numerical simulation of multiple 3D fracture propagation using arbitrary meshes. Comput Methods Appl Mech Eng 200:953–966

    Article  MathSciNet  MATH  Google Scholar 

  12. Khoei AR, Eghbalian M, Moslemi H, Azadi H (2013) Crack growth modeling via 3D automatic adaptive mesh refinement based on modified-SPR technique. Appl Math Model 37:357–383

    Article  MathSciNet  MATH  Google Scholar 

  13. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48:1549–1570

    Article  MATH  Google Scholar 

  14. Kim J, Duarte CA (2015) A new generalized finite element method for two-scale simulations of propagating cohesive fractures in 3-D. Int J Numer Methods Eng 104:1139–1172

    Article  MathSciNet  MATH  Google Scholar 

  15. Mi Y, Aliabadi MH (1994) Three-dimensional crack growth simulation using BEM. Comput Struct 52(5):871–878

    Article  MATH  Google Scholar 

  16. Wilde AJ, Aliabadi MH (1999) 3-D dual BEM formulation for the analysis of crack growth. Comput Mech 23:250–257

    Article  MATH  Google Scholar 

  17. Dell’Erba DN, Aliabadi MH (2000) Three-dimensional thermo-mechanical fatigue crack growth using BEM. Int J Fatigue 22:261–273

    Article  Google Scholar 

  18. Ortiz JE, Mantič V, París F (2006) A domain-independent integral for computation of stress intensity factors along three-dimensional crack fronts and edges by BEM. Int J Solids Struct 43:5593–5612

    Article  MATH  Google Scholar 

  19. Chaves AP, Peixoto RG, da Silva RP (2021) Three dimensional cells with embedded strong discontinuity for material failure analysis by the boundary element method. Eng Anal Bound Elem 133:107–119

    Article  MathSciNet  MATH  Google Scholar 

  20. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364

    Article  Google Scholar 

  21. Tawadrous AS, DeGagné D, Pierce M, Mas Ivars D (2009) Prediction of uniaxial compression PFC3D model micro-properties using artificial neural networks. Int J Numer Anal Methods Geomech 33:1953–1962

    Article  MATH  Google Scholar 

  22. Ding XB, Zhang LY, Zhu HH, Zhang Q (2014) Effect of model scale and particle size distribution on PFC3D simulation results. Rock Mech Rock Eng 47:2139–2156

    Article  Google Scholar 

  23. He PF, Kulatilake PHSW, Yang XX, Liu DQ, He MC (2018) Detailed comparison of nine intact rock failure criteria using polyaxial intact coal strength data obtained through PFC3D simulations. Acta Geotech 13:419–445

    Google Scholar 

  24. Sarfarazi V, Haeri H, Shemirani AB (2018) Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D. Smart Struct Syst 22:675–687

    Google Scholar 

  25. Bai YF, Li XJ, Yang WM, Xu ZH, Lv MY (2022) Multiscale analysis of tunnel surrounding rock disturbance: A PFC3D-FLAC3D coupling algorithm with the overlapping domain method. Comput Geotech 147:104752

    Article  Google Scholar 

  26. Shi GH, Goodman RE (1985) Two dimensional discontinuous deformation analysis. Int J Numer Anal Methods Geomech 9:541–556

    Article  MATH  Google Scholar 

  27. Shi GH, Goodman RE (1989) Generalization of two-dimensional discontinuous deformation analysis for forward modelling. Int J Numer Anal Methods Geomech 13:359–380

    Article  MATH  Google Scholar 

  28. Wu ZJ, Jiang YL, Liu QS, Ma H (2018) Investigation of the excavation damaged zone around deep TBM tunnel using a Voronoi-element based explicit numerical manifold method. Int J Rock Mech Min Sci 112:158–170

    Article  Google Scholar 

  29. He L, Ma GW (2010) Development of 3D numerical manifold method. Int J Comput Methods 7:107–129

    Article  MathSciNet  MATH  Google Scholar 

  30. He L, An XM, Zhao ZY (2014) Development of contact algorithm for three-dimensional numerical manifold method. Int J Numer Methods Eng 97:423–453

    Article  MATH  Google Scholar 

  31. He L, An XM, Ma GW, Zhao ZY (2013) Development of three-dimensional numerical manifold method for jointed rock slope stability analysis. Int J Rock Mech Min Sci 64:22–35

    Article  Google Scholar 

  32. Yang YT, Xia Y, Zheng H, Liu ZJ (2021) Investigation of rock slope stability using a 3D nonlinear strength-reduction numerical manifold method. Eng Geol 292:106285

    Article  Google Scholar 

  33. Yang SK, Cao MS, Ren XH, Ma GW, Zhang JX, Wang HJ (2018) 3D crack propagation by the numerical manifold method. Comput Struct 194:116–129

    Article  Google Scholar 

  34. Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113:397–414

    Article  MathSciNet  MATH  Google Scholar 

  35. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51:295–315

    Article  Google Scholar 

  36. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 610(13):2316–2343

    Article  MATH  Google Scholar 

  37. Rabczuk T, Zi G, Bordas S, Xuan-Nguyen H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37–40):2437–2455

    Article  MATH  Google Scholar 

  38. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang Y, Zhou XP, Wang YT, Shou YD (2018) A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct 134:89–115

    Article  Google Scholar 

  40. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574

    Article  Google Scholar 

  41. Yao XH, Huang D (2022) Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and fracturing. Comput Struct 270:106847

    Article  Google Scholar 

  42. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  43. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang LF, Zhou XP (2020) Phase field model for simulating the fracture behaviors of some disc-type specimens. Eng Fract Mech 226:106870

    Article  Google Scholar 

  45. Chen L, de Borst R (2021) Phase-field modelling of cohesive fracture. Eur J Mech A Solids 90:104343

    Article  MathSciNet  MATH  Google Scholar 

  46. Molnár G, Gravouil A (2017) 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem Anal Des 130:27–38

    Article  Google Scholar 

  47. Wu JY, Huang Y, Zhou H, Nguyen VP (2021) Three-dimensional phase-field modeling of mode I + II/III failure in solids. Comput Methods Appl Mech Eng 373:113537

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang LF, Zhou XP (2021) A field-enriched finite element method for simulating the failure process of rocks with different defects. Comput Struct 250:106539

    Article  Google Scholar 

  49. Zhou XP, Wang LF, Jia ZM (2021) Field-enriched finite-element method for simulating crack propagation and coalescence in geomaterials. J Eng Mech 147(10):04021063

    Google Scholar 

  50. Zhou XP, Jia ZM, Wang LF (2021) A field-enriched finite element method for brittle fracture in rocks subjected to mixed mode loading. Eng Anal Bound Elem 129:105–124

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou XP, Wang LF (2021) A field-enriched finite element method for crack propagation in fiber-reinforced composite lamina without remeshing. Compos Struct 270:114074

    Article  Google Scholar 

  52. Zhou XP, Wang LF (2021) Investigating propagation path of interface crack by the field-enriched finite element method. Appl Math Model 99:81–105

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang LF, Zhou XP (2021) Fracture analysis of functionally graded materials by the field-enriched finite element method. Eng Fract Mech 253:107875

    Article  Google Scholar 

  54. Jia ZM, Zhou XP (2022) Field-enriched finite element method for simulating complex cracks in brittle solids. Eng Fract Mech 268:108504

    Article  Google Scholar 

  55. Yu HJ, Kuna M (2021) Interaction integral method for computation of crack parameters K-T -A review. Eng Fract Mech 249:107722

    Article  Google Scholar 

  56. Walters MC, Paulino GH, Dodds RH Jr (2005) Interaction integral procedures for 3-D curved cracks including surface tractions. Eng Fract Mech 72(11):1635–1663

    Article  Google Scholar 

  57. Tian R, Wen LF, Wang LX (2019) Three-dimensional improved XFEM (IXFEM) for static crack problems. Comput Methods Appl Mech Eng 343:339–367

    Article  MathSciNet  MATH  Google Scholar 

  58. Cordeiro SGF, Leonel ED (2019) An improved computational framework based on the dual boundary element method for three-dimensional mixed-mode crack propagation analyses. Adv Eng Softw 135:102689

    Article  Google Scholar 

  59. Yang SK, Zhang JX, Ren XH (2018) Study of three-dimensional crack propagation based on numerical manifold method. Rock Soil Mech 39(S1):488–494

    Google Scholar 

  60. Chen GQ, Chen Y, Sun X, Wang D, Qing CA, Lin ZH (2020) Crack coalescence and brittle failure characteristics of open rock bridges. Chin J Geotech Eng 42(5):908–915

    Google Scholar 

Download references

Acknowledgements

This work was supported by Funded by the Research Fund of State and Local Joint Engineering Laboratory for Gas Drainage & Ground Control of Deep Mines (Henan Polytechnic University) (SJF2206) and the National Natural Science Foundation of China (Grant Nos. 51839009 and 52027814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhou.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, X. Field-enriched finite element method for simulating of three-dimensional crack propagation. Comput Mech 71, 1119–1138 (2023). https://doi.org/10.1007/s00466-023-02297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02297-9

Keywords

Navigation