Skip to main content
Log in

Hybrid TFETI domain decomposition with the clusters joined by faces’ rigid modes for solving huge 3D elastic problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We describe the three-level hybrid domain decomposition TFETI method and show that the condition number of an elastic cluster defined on a fixed cube domain, decomposed into \(m\times m\times m\) subdomains interconnected by the face’s rigid body modes and discretized by a regular grid, increases proportionally to m. The estimates are plugged into the analysis of the unpreconditioned H-TFETI (hybrid) method and used to prove its numerical scalability for linear problems. The estimates show that the cost of the coarse problem decreases with \(m^6\) while the number of iterations increases only proportionally to \(\sqrt{m}\). Numerical experiments show a large scope of scalability of H-TFETI. The results are also essential for solving huge contact problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brenner SC (1999) The condition number of the Schur complement in domain decomposition. Numer Math 83:187–203

    Article  MATH  Google Scholar 

  2. Brzobohatý T, Jarošová M, Kozubek T, Menšík M, Markopoulos A (2013) The hybrid total FETI method. Proceedings of the Third International Conference on Parallel, Distributed, Grid, and Cloud Computing for Engineering Civil-Comp

  3. Dostál Z (2009) Optimal Quadratic Programming Algorithms, SOIA 23, 1st edn. Springer, US, New York

    Google Scholar 

  4. Dostál Z, Brzobohatý T, Horák D, Kružík J, Vlach O (2022) Scalable hybrid TFETI-DP methods for large boundary variational inequalities. In: Brenner SC et al (eds) Domain decomposition methods in science and engineering XXVI. LNCSE, vol 145, pp 27–38

  5. Dostál Z, Brzobohatý T, Vlach O (2021) Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems. J Numer Math 29(4):289–306

    Article  MATH  Google Scholar 

  6. Dostál Z, Brzobohatý T, Vlach O, Říha L (2022) On the spectrum of Schur complements of 2D elastic clusters joined by rigid edge modes and hybrid domain decomposition. Numer Math 152:41–66

    Article  MATH  Google Scholar 

  7. Dostál Z, Gomes FAM, Santos SA (2000) Duality based domain decomposition with natural coarse space for variational inequalities. J Comput Appl Math 126(1–2):397–415

    Article  MATH  Google Scholar 

  8. Dostál Z, Horák D (2007) Theoretically supported scalable algorithms for numerical solution of variational inequalities. SIAM J Numer Anal 45(2):347–357

    Article  MATH  Google Scholar 

  9. Dostál Z, Horák D, Brzobohatý T, Vodstrčil P (2021) Bounds on the spectra of Schur complements of large H-TFETI clusters for 2D Laplacian. Numer Linear Algebra Appl. 28(2):e2344

    Article  MATH  Google Scholar 

  10. Dostál Z, Horák D, Kružík J, Brzobohatý T, Vlach O (2022) Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities. Numer Algorithms. https://doi.org/10.1007/s11075-022-01281-3

    Article  MATH  Google Scholar 

  11. Dostál Z, Horák D, Kučera R (2006) Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun Numer Methods Eng 22:1155–1162

    Article  MATH  Google Scholar 

  12. Dostál Z, Horák D, Stefanica D (2005) A scalable FETI-DP algorithm for a coercive variational inequality. IMACS J Appl Numer Math 54(3–4):378–390

    Article  MATH  Google Scholar 

  13. Dostál Z, Horák D, Stefanica D (2007) A scalable FETI-DP algorithm for semi-coercive variational inequalities. Comput Methods Appl Mech Eng 196(8):1369–1379

    Article  MATH  Google Scholar 

  14. Dostál Z, Kozubek T, Sadowská M, Vondrák V (2016) Scalable algorithms for contact problems, vol 36. AMM. Springer, New York

    MATH  Google Scholar 

  15. Dostál Z, Kozubek T, Vlach O (2015) Reorthogonalization based stiffness preconditioning in FETI algorithms with applications to variational inequalities. Numer Linear Algebra Appl 22(6):987–998

    Article  MATH  Google Scholar 

  16. Dostál Z, Vlach O (2021) An accelerated augmented Lagrangian algorithm with adaptive orthogonalization strategy for bound and equality constrained quadratic programming and its application to large-scale contact problems of elasticity. J Comput Appl Math 394:113565

    Article  MATH  Google Scholar 

  17. Dostál Z, Vlach O, Brzobohatý T (2019) Scalable TFETI based algorithm with adaptive augmentation for contact problems with variationally consistent discretization of contact conditions. Finite Elem Anal Des 156:34–43

    Article  Google Scholar 

  18. ESPRESO—highly parallel framework for engineering applications. http://numbox.it4i.cz

  19. Farhat C, Lesoinne M, Le Tallec P, Pierson K, Rixen D (2001) A dual–primal unified FETI method I—a faster alternative to the two/level FETI method. Int J Numer Methods Eng 50(7):1524–1544

    Article  MATH  Google Scholar 

  20. Farhat C, Lesoinne M, Pierson K (2000) A scalable dual–primal domain decomposition method. Numer Linear Algebra Appl 7(7–8):687–714

    Article  MATH  Google Scholar 

  21. Farhat C, Mandel J, Roux F-X (1994) Optimal convergence properties of the FETI domain decomposition method. Comput Methods Appl Mech Eng 115:365–385

    Article  Google Scholar 

  22. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227

    Article  MATH  Google Scholar 

  23. Farhat C, Roux F-X (1992) An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J Sci Comput 13:379–396

    Article  MATH  Google Scholar 

  24. Golub GH, Van Loan CF (2012) Matrix computations, 4th edn. John Hopkins University Press, Baltimore

    MATH  Google Scholar 

  25. Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  26. Ipsen IC, Mayer CD (1995) The angle between complementary subspaces. Am Math Mon 102(10):904–911

    Article  MATH  Google Scholar 

  27. Klawonn A, Lanser M, Rheinbach O (2015) Toward extremally scalable nonlinear domain decomposition methods for elliptic partial differential equations. SIAM J Sci Comput 37(6):C667–C696

    Article  MATH  Google Scholar 

  28. Klawonn A, Rheinbach O (2006) A parallel implementation of dual–primal FETI methods for three dimensional linear elasticity using a transformation of basis. SIAM J Sci Comput 28(5):1886–1906

    Article  MATH  Google Scholar 

  29. Klawonn A, Rheinbach O (2007) Robust FETI-DP methods for heterogeneous three dimensional elasticity problems. Comput Methods Appl Mech Eng 196:1400–1414

    Article  MATH  Google Scholar 

  30. Klawonn A, Rheinbach O (2008) A hybrid approach to 3-level FETI. Proc Appl Math Mech 8:10841–10843

    Article  MATH  Google Scholar 

  31. Klawonn A, Rheinbach O (2010) Highly scalable parallel domain decomposition methods with an application to biomechanics. Z Angew Math Mech 90(1):5–32

    Article  MATH  Google Scholar 

  32. Klawonn A, Widlund OB (2006) Dual–primal FETI method for linear elasticity. Commun Pure Appl Math LIX:1523–1572

    Article  MATH  Google Scholar 

  33. Klawonn A, Widlund OB (2005) Selecting constraints in dual–primal FETI methods for elasticity in three dimensions. In: Barth TJ et al (eds) Domain decomposition methods in science and engineering, vol 40. Lecture Notes in Computational Science and Engineering. Springer, Berlin, pp 67–81. https://doi.org/10.1007/3-540-26825-1-5

    Chapter  MATH  Google Scholar 

  34. Klawonn A, Widlund OB, Dryja M (2002) Dual–primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J Numer Anal 40:159–179

    Article  MATH  Google Scholar 

  35. Lee J (2013) Domain decomposition methods for auxiliary linear problems of an elliptic variational inequality. In: Bank R et al (eds) Domain decomposition methods in science and engineering XX, vol 91. Lecture Notes in Computational Science and Engineering. Springer, Berlin, pp 319–326

  36. Lee J (2013) Two domain decomposition methods for auxiliary linear problems for a multibody variational inequality. SIAM J Sci Comput 35(3):1350–1375

  37. Li J, Widlund OB (2006) FETI-DP, BDDC, and block Cholesky method. Int J Numer Methods Eng 66:250–271

    Article  MATH  Google Scholar 

  38. Mayer CD (2000) Matrix analysis and applied linear algebra. SIAM, Philadelphia

    Book  Google Scholar 

  39. Mandel J, Tezaur R (2001) On the convergence of a dual–primal substructuring method. Numer Math 88:543–558

    Article  MATH  Google Scholar 

  40. Markopoulos A, Říha L, Brzobohatý T, Meca O, Kučera R, Kozubek T (2018) The HTFETI method variant gluing cluster subdomains by kernel matrice representing the rigid body motions. In: Bjørstadt PE et al (eds) Proceedings of DDM24, vol 125. LNCSE. Springer, Cham

    MATH  Google Scholar 

  41. Pechstein C (2013) Finite and boundary element tearing and interconnecting solvers for multiscale problems. Springer, Heidelberg

    Book  MATH  Google Scholar 

  42. Říha L, Brzobohatý T, Markopoulos A (2016) Efficient implementation of total FETI solver for graphic processing units using Schur complement. In: Kozubek T, Blaheta R, Šístek J, Rozložník M, Čermák M (eds) Proceedings of conference on high performance computing in science and engineering 2015, vol 9611. LNCS. Springer, Cham, pp 85–100. https://doi.org/10.1007/978-3-319-40361-8_6

    Chapter  Google Scholar 

  43. Říha L, Merta M, Vavřík R, Brzobohaty T, Markopoulos A, Meca O, Vysocký O, Kozubek T, Vondrák V (2019) A massively parallel and memory-efficient FEM toolbox with a hybrid total FETI solver with accelerator support. Int J High Perform Comput Appl 33(4):660–677. https://doi.org/10.1177/1094342018798452

  44. Schacke K (2004) On the Kronecker product. MSc. Thesis, University of Waterloo

  45. Stewart GW (1998) Matrix algorithms, vol I. Basic decompositions. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  46. Toivanen J, Avery P, Farhat C (2018) A multilevel FETI-DP method and its performance for problems with billions of degrees of freedom. Int J Numer Methods Eng 116:661–682

    Article  Google Scholar 

  47. Toselli A, Widlund OB (2005) Domain decomposition methods—algorithms and theory, vol 34. Springer Series on Computational Mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  48. Vodstrčil P, Bouchala J, Jarošová M, Dostál Z (2017) On conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplacian. Appl Math 62(6):699–718

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Dostál.

Additional information

To the memory of Alexandros Markopoulos, our student, colleague, and friend, who carried out some early experiments with hybrid TFETI in 3D and drew our attention to this interesting method.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project IT4Innovations excellence in science—LQ1602 and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project IT4Innovations National Supercomputing Center—LM2015070.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dostál, Z., Brzobohatý, T., Vlach, O. et al. Hybrid TFETI domain decomposition with the clusters joined by faces’ rigid modes for solving huge 3D elastic problems. Comput Mech 71, 333–347 (2023). https://doi.org/10.1007/s00466-022-02242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02242-2

Keywords

Mathematics Subject Classification

Navigation