Skip to main content
Log in

Manifold-based material field series expansion method for topology optimization on free-form surfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new topology optimization method for free-form surfaces is developed, significantly reducing the dimensions of the design problem, providing smooth structural boundary descriptions and inherently avoiding checkerboard patterns. First, the basic idea is to represent the topology of free-form surfaces with a manifold-based material field function with the predefined spatial correlation. Then we employ a series expansion and truncation technique on the material field function to reduce the control coefficients of the topology description down to a small set. The spatial correlation of the manifold-based material field is formulated in an exponential form expressed with the geodesic distance. Herein, the geodesic distance is evaluated based on the heat method, which is convenient to implement and can achieve high computational efficiency and accuracy. The sensitivity analysis procedures are provided, and the gradient-based optimization algorithm is utilized to solve the proposed optimization model without requiring special filtering techniques. Several numerical examples are presented to illustrate the validity and applicability of the present topology optimization method on free-form surface structures and its potential for gradient-free topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

Data and code will be made available on request. The MATLAB code for the original MFSE method can also be downloaded from the website https://journal.hep.com.cn/fme/EN/10.1007/s11465-021-0637-3.

References

  1. Desbrun M, Kanso E, Tong Y. (2008) Discrete differential forms for computational modeling. Discrete Differential Geometry. Birkhäuser Basel, 287–324

  2. Seo YD, Youn SK, Yeon JH, Chang SY, Yoo JT. (2004) Topology optimization of inner-wall stiffener for critical buckling loads of cylindrical containers. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. p 4418

  3. Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23(4):595–622

    Article  MATH  Google Scholar 

  4. Zhu JH, Li Y, Zhang WH. Topology optimization with shape preserving design. In: Proceedings of 5th international conference on computational methods, Cambridge, UK, 2014

  5. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  Google Scholar 

  6. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  7. Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237

    Article  MATH  Google Scholar 

  8. van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  Google Scholar 

  9. Munk DJ, Vio GA, Steven GP (2015) Topology and shape optimization methods using evolutionary algorithms: a review. Struct Multidiscip Optim 52(3):613–631

    Article  Google Scholar 

  10. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MATH  Google Scholar 

  11. Ansola R, Canales J, Tarrago JA, Rasmussen J (2002) On simultaneous shape and material layout optimization of shell structures. Struct Multidiscip Optim 24(3):175–184

    Article  Google Scholar 

  12. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  13. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  14. Hassani B, Tavakkoli SM, Ghasemnejad H (2013) Simultaneous shape and topology optimization of shell structures. Struct Multidiscip Optim 48(1):221–233

    Article  MATH  Google Scholar 

  15. Deng Y, Liu Z, Korvink JG (2020) Topology optimization on two-dimensional manifolds. Comput Methods Appl Mech Eng 364:112937

    Article  MATH  Google Scholar 

  16. Gu XD, Wang S, Kim J, Zeng Y, Wang Y, Qin H, Samaras D. (2007) Ricci flow for 3D shape analysis. In: 11th International Conference on Computer Vision. IEEE, pp 1–8

  17. Gu XD, Wang Y, Chan TF, Thompson PM, Yau ST (2004) Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans Med Imag 23(8):949–958

    Article  Google Scholar 

  18. Ye Q, Guo Y, Chen S, Lei N, Gu XD (2019) Topology optimization of conformal structures on manifolds using extended level set methods (X-LSM) and conformal geometry theory. Comput Methods Appl Mech Eng 344:164–185

    Article  MATH  Google Scholar 

  19. Vogiatzis P, Ma M, Chen S, Gu XD (2018) Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping. Comput Methods Appl Mech Eng 328:477–497

    Article  MATH  Google Scholar 

  20. Tian J, Zhao X, Gu XD, Chen S. (2020) designing conformal ferromagnetic soft actuators using extended level set methods (X-LSM). In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 83990, p V010T10A012

  21. Luo Y, Bao J (2019) A material-field series-expansion method for topology optimization of continuum structures. Comput Struct 225:106122

    Article  Google Scholar 

  22. Liu P, Yan Y, Zhang X, Luo Y (2021) A MATLAB code for the material-field series-expansion topology optimization method. Front Mech Eng 16(3):607–622

    Article  Google Scholar 

  23. Wang Y, Luo Y, Yan Y (2022) A multi-material topology optimization method based on the material-field series-expansion model. Struct Multidiscip Optim 65(1):1–15

    Article  Google Scholar 

  24. Luo Y, Xing J, Kang Z (2020) Topology optimization using material-field series expansion and Kriging-based algorithm: an effective non-gradient method. Comput Methods Appl Mech Eng 364:112966

    Article  MATH  Google Scholar 

  25. Liu P, Yan Y, Zhang X, Luo Y, Kang Z (2021) Topological design of microstructures using periodic material-field series-expansion and gradient-free optimization algorithm. Mater Des 199:109437

    Article  Google Scholar 

  26. Luo Y, Li Y (2022) Tunable bandgap design of soft phononic crystals using topology optimization. Adv Theor Simul 5(7):2100620

    Article  Google Scholar 

  27. Shi S, Zhou P, Lü Z (2021) A density-based topology optimization method using radial basis function and its design variable reduction. Struct Multidiscip Optim 64(4):2149–2163

    Article  Google Scholar 

  28. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  Google Scholar 

  29. Schrijver A (2012) On the history of the shortest path problem. Doc Math 17(1):155–167

    MATH  Google Scholar 

  30. Surazhsky V, Surazhsky T, Kirsanov D, Gortler SJ, Hoppe H (2005) Fast exact and approximate geodesics on meshes. ACM Trans Graph (TOG) 24(3):553–560

    Article  Google Scholar 

  31. Sethian JA, Vladimirsky A (2000) Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes. Proc Natl Acad Sci 97(11):5699–5703

    Article  MATH  Google Scholar 

  32. Crane K, Weischedel C, Wardetzky M (2013) Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans Graph (TOG) 32(5):1–11

    Article  Google Scholar 

  33. Tao J, Zhang J, Deng B, Fang Z, Peng Y, He Y (2019) Parallel and scalable heat methods for geodesic distance computation. IEEE Trans Pattern Anal Mach Intell 43(2):579–594

    Article  Google Scholar 

  34. Zhang J, Ellingwood B (1994) Orthogonal series expansions of random fields in first-order reliability analysis. J Eng Mech 120(12):2660–2677

    Google Scholar 

  35. Loève M (1955) Probability theory. Van Nostrand, Princeton

    MATH  Google Scholar 

  36. Li CC, Kiureghian DA (1993) Optimal discretization of random fields. J Eng Mech 119(6):1136–1154

    Google Scholar 

  37. Luo Y, Zhan J, Xing J, Kang Z (2019) Non-probabilistic uncertainty quantification and response analysis of structures with a bounded field model. Comput Methods Appl Mech Eng 347:663–678

    Article  MATH  Google Scholar 

  38. Varadhan SRS (1967) On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun Pure Appl Math 20(2):431–455

    Article  MATH  Google Scholar 

  39. Turk G, Levoy M. (1994) Zippered polygon meshes from range images. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. pp 311–318

  40. Schwarz G (2006) Hodge decomposition - a method for solving boundary value problems. Springer, Newyork

    Google Scholar 

  41. Kimmel R, Sethian JA (1998) Fast marching methods on triangulated domains. Proc Nat Acad Sci 95:8431–8435

    Article  MATH  Google Scholar 

  42. Wang SY, Tai K (2005) Structural topology design optimization using Genetic Algorithms with a bit-array representation. Comput Methods Appl Mech Eng 194:3749–3770

    Article  MATH  Google Scholar 

  43. Wu CY, Tseng KY (2010) Topology optimization of structures using modified binary differential evolution. Struct Multidiscip Optim 42:939–953

    Article  Google Scholar 

  44. Deng C, Wang Y, Qin C et al (2022) Self-directed online machine learning for topology optimization. Nat Commun 13(1):1–14

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (52275237, 11902064) and the Shenzhen Stability Support Key Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjun Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Liu, P., Sun, Z. et al. Manifold-based material field series expansion method for topology optimization on free-form surfaces. Comput Mech 71, 237–255 (2023). https://doi.org/10.1007/s00466-022-02233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02233-3

Keywords

Navigation