Skip to main content
Log in

Data-driven multiscale method for composite plates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Composite plates are widely used in many engineering fields such as aerospace and automotive. An accurate and efficient multiscale modeling and simulation strategy is of paramount importance to improve design and manufacture. To this end, we propose an efficient data-driven computing scheme based on the classical plate theory for the multiscale analysis of composite plates. In order to accurately describe the relationship between the macroscopic mechanical properties and the microscopic architecture, the multiscale finite element method (FE\(^2\)) is adopted to compute the generalized strain and stress fields. These data are then used to construct a database for data-driven computing. Since the database is offline populated, the data-driven computing scheme allows for a reduced computational cost when compared to the traditional multiscale method, where the concurrent coupling of different scales is still a burden. And data are obtained from a reduced structural model for computational efficiency. The proposed scheme is therefore addressed as Structural-Genome-Driven (SGD) modeling of plates. Compared to the general data-driven computational mechanics modeling of plates, SGD is found to be more efficient since the number of integration points is significantly reduced. This scheme provides a robust alternative computational tool for composite plate structures analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. McCarthy MA, Harte CG, Wiggenraad JFM, Michielsen ALPJ, Kohlgrueber D, Kamoulakos A (2000) Finite element modelling of crash response of composite aerospace sub-floor structures. Comput Mech 26:250–258

    Article  Google Scholar 

  2. Fantuzzi N, Bacciocchi M, Benedetti D, Agnelli J (2021) The use of sustainable composites for the manufacturing of electric cars. Compos C Open Access 4:100096

    Article  Google Scholar 

  3. Hui Y, Xu R, Giunta G, De Pietro G, Hu H, Belouettar S, Carrera E (2019) Multiscale CUF-FE\(^2\) nonlinear analysis of composite beam structures. Comput Struct 221:28–43

    Article  Google Scholar 

  4. Gravemeier V, Lenz S, Wall WA (2008) Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods. Comput Mech 41:279–291

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Y, Ma Y, Pan F, Wang S (2018) Research progress in multi-scale mechanics of composite materials. Chin J Solid Mech 39:1–68

    Google Scholar 

  6. Raju K, Tay TE, Tan VBC (2021) A review of the FE\(^2\) method for composites. Multiscale Multidiscip Model Exp Des 25:1–24

    Article  Google Scholar 

  7. Green SD, Matveev MY, Long AC, Ivanov D, Hallett SR (2014) Mechanical modelling of 3D woven composites considering realistic unit cell geometry. Compos Struct 118:284–293

    Article  Google Scholar 

  8. Fantuzzi N, Bacciocchi M, Agnelli J, Benedetti D (2020) Three-phase homogenization procedure for woven fabric composites reinforced by carbon nanotubes in thermal environment. Compos Struct 254:112840

    Article  Google Scholar 

  9. Aranda-Iglesias D, Giunta G, Peronnet-Paquin A, Sportelli F, Keniray D, Belouettar S (2021) Multiscale modelling of the mechanical response of 3D multi-axial knitted 3D spacer composites. Compos Struct 257:113139

    Article  Google Scholar 

  10. Adhikari S, Mukhopadhyay T, Liu X (2021) Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approach. Mech Mater 157:103796

    Article  Google Scholar 

  11. Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structures. Comput Mater Sci 16:344–354

    Article  Google Scholar 

  12. Nezamabadi S, Yvonnet J, Zahrouni H, Potier-Ferry M (2009) A multilevel computational strategy for handling microscopic and macroscopic instabilities. Comput Methods Appl Mech Eng 198:2099–2110

    Article  MATH  Google Scholar 

  13. Tchalla A, Belouettar S, Makradi A, Zahrouni H (2013) An ABAQUS toolbox for multiscale finite element computation. Compos B Eng 52:323–333

    Article  Google Scholar 

  14. Koyanagi J, Kawamoto K, Higuchi R, Tan VBC, Tay TE (2021) Direct FE\(^2\) for simulating strain-rate dependent compressive failure of cylindrical CFRP. Compos C 256:100165

    Google Scholar 

  15. Xu R, Bouby C, Zahrouni H, Zineb TB, Hu H, Potier-Ferry M (2018) 3D modeling of shape memory alloy fiber reinforced composites by multiscale finite element method. Compos Struct 200:408–419

    Article  Google Scholar 

  16. Xu R, Hui Y, Hu H, Huang Q, Zahrouni H, Zineb TB, Potier-Ferry M (2019) A Fourier-related FE\(^2\) multiscale model for instability phenomena of long fiber reinforced materials. Compos Struct 211:530–539

    Article  Google Scholar 

  17. Montáns FJ, Chinesta F, Gómez-Bombarelli R, Kutz JN (2019) Data-driven modeling and learning in science and engineering. Comptes Rendus Mécanique 347:845–855

    Article  Google Scholar 

  18. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanic. Comput Methods Appl Mech Eng 304:81–101

    Article  MathSciNet  MATH  Google Scholar 

  19. Leygue A, Seghir R, Réthoré J, Coret M, Verron E, Stainier L (2019) Non-parametric material state field extraction from full field measurements. Comput Mech 64:501–509

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang J, Xu R, Huang Q, Shao Q, Huang W, Hu H (2020) Data-driven computational mechanics: a review. Chin J Solid Mech 41:1–14

    Google Scholar 

  21. Ibañez R, Borzacchiello D, Aguado JV, Abisset-Chavanne E, Cueto E, Ladeveze P, Chinesta F (2017) Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput Mech 60:813–826

    Article  MathSciNet  MATH  Google Scholar 

  22. Yvonnet J, He QC (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223:341–368

    Article  MathSciNet  MATH  Google Scholar 

  23. Yvonnet J, Gonzalez D, He QC (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198:2723–2737

    Article  MATH  Google Scholar 

  24. Le BA, Yvonnet J, He QC (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104:1061–1084

    Article  MathSciNet  MATH  Google Scholar 

  25. Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang JS, Liew JX, Liew KM (2021) Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites. Compos Struct 267:113917

    Article  Google Scholar 

  27. Yang J, Xu R, Hu H, Huang Q, Huang W (2019) Structural-Genome-Driven computing for composite structures. Compos Struct 215:446–453

    Article  Google Scholar 

  28. Xu R, Yang J, Yan W, Huang Q, Giunta G, Belouettar S, Zahrouni H, Zineb TB, Hu H (2020) Data-driven multiscale finite element method: from concurrence to separation. Comput Methods Appl Mech Eng 363:112893

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang W, Xu R, Yang J, Huang Q, Hu H (2021) Data-driven multiscale simulation of FRP based on material twins. Compos Struct 256:113013

    Article  Google Scholar 

  30. He Q, Chen JS (2020) A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput Methods Appl Mech Eng 363:112791

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang H, Qiu H, Xiang Q, Tang S, Guo X (2020) Exploring elastoplastic constitutive law of microstructured materials through artificial neural network-A mechanistic-based data-driven approach. J Appl Mech 87:091005

    Article  Google Scholar 

  32. Liu Z, Bessa MA, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577

    Article  MathSciNet  MATH  Google Scholar 

  34. Kirchdoerfer T, Ortiz M (2018) Data-driven computing in dynamics. Int J Numer Methods Eng 113:1697–1710

    Article  MathSciNet  Google Scholar 

  35. Eggersmann R, Kirchdoerfer T, Reese S, Stainier L, Ortiz M (2019) Model-free data-driven inelasticity. Comput Methods Appl Mech Eng 350:81–99

    Article  MathSciNet  MATH  Google Scholar 

  36. Nguyen LTK, Keip MA (2018) A data-driven approach to nonlinear elasticity. Comput Struct 194:97–115

    Article  Google Scholar 

  37. Platzer A, Leygue A, Stainier L, Ortiz M (2021) Finite element solver for data-driven finite strain elasticity. Comput Methods Appl Mech Eng 379:113756

    Article  MathSciNet  MATH  Google Scholar 

  38. Huang W, Causse P, Brailovski V, Hu H, Trochu F (2019) Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling. Compos A Appl Sci Manuf 124:105481

    Article  Google Scholar 

  39. Huang W, Causse P, Hu H, Trochu F (2020) Numerical and experimental investigation of saturated transverse permeability of 2D woven glass fabrics based on material twins. Polym Compos 41:1341–1355

    Article  Google Scholar 

  40. Huang W, Causse P, Hu H, Belouettar S, Trochu F (2020) Transverse compaction of 2D glass woven fabrics based on material twins-Part I: geometric analysis. Compos Struct 237:111929

    Article  Google Scholar 

  41. Huang W, Causse P, Hu H, Belouettar S, Trochu F (2020) Transverse compaction of 2D glass woven fabrics based on material twins-Part II: tow and fabric deformations. Compos Struct 237:111963

    Article  Google Scholar 

  42. Stainier L, Leygue A, Ortiz M (2019) Model-free data-driven methods in mechanics: material data identification and solvers. Comput Mech 64:381–393

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang Q, Choe J, Yang J, Hui Y, Xu R, Hu H (2019) An efficient approach for post-buckling analysis of sandwich structures with elastic-plastic material behavior. Int J Eng Sci 142:20–35

    Article  MathSciNet  MATH  Google Scholar 

  44. Klarmann S, Gruttmann F, Klinkel S (2020) Homogenization assumptions for coupled multiscale analysis of structural elements: beam kinematics. Comput Mech 65:635–661

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu K, Hu H, Tang H, Giunta G, Potier-Ferry M, Belouettar S (2015) A novel two-dimensional finite element to study the instability phenomena of sandwich plates. Comput Methods Appl Mech Eng 283:1117–1137

    Article  MathSciNet  MATH  Google Scholar 

  46. Liew KM, Pan ZZ, Zhang LW (2019) An overview of layerwise theories for composite laminates and structures: development, numerical implementation and application. Compos Struct 216:240–259

    Article  Google Scholar 

  47. Kuang Z, Huang Q, Huang W, Yang J, Zahrouni H, Potier-Ferry M, Hu H (2021) A computational framework for multi-stability analysis of laminated shells. J Mech Phys Solids 256:104317

    Article  MathSciNet  Google Scholar 

  48. Liew KM, Alibeigloo A (2021) Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities. Compos Struct 256:113039

    Article  Google Scholar 

  49. Hu H, Belouettar S, Potier-Ferry M, Makradi A, Koutsawa Y (2011) Assessment of various kinematic models for instability analysis of sandwich beams. Eng Struct 33:572–579

    Article  Google Scholar 

  50. Hui Y, Giunta G, Belouettar S, Huang Q, Hu H, Carrera E (2017) A free vibration analysis of three-dimensional sandwich beams using hierarchical one-dimensional finite elements. Compos B Eng 110:7–19

    Article  Google Scholar 

  51. Liu X, Yu W (2016) A novel approach to analyze beam-like composite structures using mechanics of structure genome. Adv Eng Softw 100:238–251

    Article  Google Scholar 

  52. Huang W, Yan W, Xu R, Huang Q, Yang J, Trochu F, Hu H (2021) Wrinkling analysis of circular membranes by a Fourier based reduced model. Thin-Walled Struct 161:107512

  53. Yang J, Huang Q, Hu H, Giunta G, Belouettar S, Potier-Ferry M (2015) A new family of finite elements for wrinkling analysis of thin films on compliant substrates. Compos Struct 119:568–577

  54. Shao Q, Liu J, Huang Q, Yang J, Hu H, Belouettar S, Giunta G (2021) A data-driven analysis on bridging techniques for heterogeneous materials and structures. Mech Adv Mater Struct 28:1–15

    Article  Google Scholar 

  55. Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29:901–916

    Article  MATH  Google Scholar 

  56. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  57. Kirchdoerfer T, Ortiz M (2017) Data driven computing with noisy material data sets. Comput Methods Appl Mech Eng 326:622–641

    Article  MathSciNet  MATH  Google Scholar 

  58. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219

    Article  MATH  Google Scholar 

  59. Yang J, Bai X, Yan W, Huang W, Huang Q, Shao Q, Hu H (2021) An efficient hierarchical data searching scheme for data-driven computational mechanics. Chin J Solid Mech 42:241–248

    Google Scholar 

  60. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, New York

    Book  MATH  Google Scholar 

  61. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550

    Article  MATH  Google Scholar 

  62. Ameen MM, Peerlings RHJ, Geers MGD (2018) A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization. Eur J Mech-A/Solids 71:89–100

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 11920101002, 11772238 and 11902227), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042020kf0006 and 2042020kf0007), and the Post Doctoral Innovation Research Post provided by Human Resources and Social Security Department of Hubei Province. Dr Belouettar acknowledge the financial support of the FNR through the Grant DeeMa project (INTER/MERA20/15011099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Huang, W., Huang, Q. et al. Data-driven multiscale method for composite plates. Comput Mech 70, 1025–1040 (2022). https://doi.org/10.1007/s00466-022-02195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02195-6

Keywords

Navigation