Skip to main content
Log in

How viscous is the beating heart? Insights from a computational study

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Understanding tissue rheology is critical to accurately model the human heart. While the elastic properties of cardiac tissue have been extensively studied, its viscous properties remain an issue of ongoing debate. Here we adopt a viscoelastic version of the classical Holzapfel Ogden model to study the viscous timescales of human cardiac tissue. We perform a series of simulations and explore stress–relaxation curves, pressure–volume loops, strain profiles, and ventricular wall strains for varying viscosity parameters. We show that the time window for model calibration strongly influences the parameter identification. Using a four-chamber human heart model, we observe that, during the physiologically relevant time scales of the cardiac cycle, viscous relaxation has a negligible effect on the overall behavior of the heart. While viscosity could have important consequences in pathological conditions with compromised contraction or relaxation properties, we conclude that, for simulations within the physiological range of a human heart beat, we can reasonably approximate the human heart as hyperelastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AHA Statistical Update (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:e139–e596

  2. Alber M, Buganza Tepole A, Cannon W, De S, Dura-Bernal S, Garikipati K, Karniadakis G, Lytton WW, Perdikaris P, Petzold L, Kuhl E (2019) Integrating machine learning and multiscale modeling: perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. npj Digit Med 2:115

    Article  Google Scholar 

  3. Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7(3):293–301

    Article  Google Scholar 

  4. Ambrosi D, Pezzuto S (2012) Active stress vs. active strain in mechanobiology: constitutive issues. J Elast 107:199–212

    Article  MathSciNet  MATH  Google Scholar 

  5. Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E (2014) The living heart project: a robust and integrative simulator for human heart function. Eur J Mech A/Solids 48:38–47

    Article  MathSciNet  MATH  Google Scholar 

  6. Berberoğlu E, Solmaz HO, Göktepe S (2014) Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. Eur J Mech A/Solids 48:60–73

    Article  MathSciNet  MATH  Google Scholar 

  7. Cansız B, Dal H, Kaliske M (2015) An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng 18:1160–1172

    Article  Google Scholar 

  8. Cansız B, Dal H, Kaliske M (2017) Computational cardiology: a modified Hill model to describe the electro-visco-elasticity of the myocardium. Comput Methods Appl Mech Eng 315:434–466

    Article  MathSciNet  MATH  Google Scholar 

  9. Cansız B, Sveric K, Ibrahim K, Strasser RH, Linke A, Kaliske M (2018) Towards predictive computer simulations in cardiology: finite element analysis of personalized heart models. ZAMM-J Appl Math Mech 98–12:2155–2176

    Article  MathSciNet  Google Scholar 

  10. Chabiniok R, Wang V, Hadjicharalambous M, Asner L, Lee J, Sermesant M, Kuhl E, Young A, Moireau P, Nash M, Chapelle D, Nordsletten DA (2016) Multiphysics and multiscale modeling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6:20150083

    Article  Google Scholar 

  11. Dal H, Göktepe S, Kaliske M, Kuhl E (2012) A fully implicit finite element method for bidomain models of cardiac electrophysiology. Comput Methods Biomech Biomed Eng 15–6:645–656

    Article  MATH  Google Scholar 

  12. Dal H, Göktepe S, Kaliske M, Kuhl E (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput Methods Appl Mech Eng 253:323–336

    Article  MathSciNet  MATH  Google Scholar 

  13. Dal H (2019) A quasi-incompressible and quasi-inextensible element formulation for transversely isotropic materials. Int J Numer Methods Eng 117:118–140

    Article  MathSciNet  Google Scholar 

  14. Dokos S, Smaill BH, Young AA, LeGrice IJ (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283:H2650–H2659

    Article  Google Scholar 

  15. Eriksson TS, Prassl AJ, Plank G, Holzapfel GA (2013) Modeling the dispersion in electromechanically coupled myocardium. Int J Numer Methods Biomed Eng 29:1267–1284

    Article  MathSciNet  Google Scholar 

  16. Genet M, Lee LC, Baillargeon B, Guccione JM, Kuhl E (2016) Modeling pathologies of systolic and diastolic heart failure. Ann Biomed Eng 44:112–127

    Article  Google Scholar 

  17. Göktepe S, Kuhl E (2009) Computational modeling of electrophysiology: a novel finite element approach. Int J Numer Methods Eng 79:156–178

    Article  MathSciNet  MATH  Google Scholar 

  18. Göktepe S, Kuhl E (2010) Electromechanics of the heart—a unified approach to the strongly coupled excitation–contraction problem. Comput Mech 45:227–243

    Article  MathSciNet  MATH  Google Scholar 

  19. Göktepe S, Acharya SNS, Kuhl E (2011) Computational modeling of passive myocardium. Int J Numer Methods Biomed Eng 27:1–12

    Article  MathSciNet  MATH  Google Scholar 

  20. Göktepe S, Menzel A, Kuhl E (2014) The generalized Hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39

    Article  MathSciNet  MATH  Google Scholar 

  21. Granzier HL, Siegfried L (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295

    Article  Google Scholar 

  22. Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, Pasque MK (2001) Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 71:654–662

    Article  Google Scholar 

  23. Gültekin O, Sommer G, Holzapfel GA (2016) An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput Methods Biomech Biomed Eng 19:1647–1664

    Article  Google Scholar 

  24. Gültekin O, Dal H, Holzapfel GA (2019) On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials. Comput Mech 63:443–453

    Article  MathSciNet  MATH  Google Scholar 

  25. Helfenstein J, Jabareen M, Mazza E, Govindjee S (2010) On non-physical response in models for fiber-reinforced hyperelastic materials. Int J Solids Struct 47:2056–2061

    Article  MATH  Google Scholar 

  26. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond Ser B Biol Sci 126:136–195

    Google Scholar 

  27. Holzapfel GA, Simo JC (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33:3019–3034

    Article  MATH  Google Scholar 

  28. Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490

    Article  Google Scholar 

  29. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc Lond 367:3445–3475

    MathSciNet  MATH  Google Scholar 

  30. Humphrey JD, Strumpf RK, Yin FCP (1990) Determination of a constitutive relation for passive myocardium: I. A new functional form

  31. Kaliske M (2000) A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput Methods Appl Mech Eng 185:225–243

    Article  MATH  Google Scholar 

  32. Liu J, Marsden AL (2018) A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction. Comput Methods Appl Mech Eng 337:549–597

    Article  MathSciNet  MATH  Google Scholar 

  33. McEvoy E, Holzapfel GA, McGarry P (2018) Compressibility and anisotropy of the ventricular myocardium: experimental analysis and microstructural modeling. J Biomech Eng 140:081004

    Article  Google Scholar 

  34. Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522

    Article  Google Scholar 

  35. Nedjar B (2007) An anisotropic viscoelastic fibre-matrix model at finite strains: continuum formulation and computational aspects. Comput Methods Appl Mech Eng 196:1745–1756

    Article  MATH  Google Scholar 

  36. Nordsletten D, Capilnasiu A, Zhang W, Wittgenstein A, Hadjicharalambous M, Sommer G, Sinkus R, Holzapfel GA (2021) A viscoelastic model for human myocardium. arXiv preprint arXiv:2105.06671

  37. Ostwald R, Kuhl E, Menzel A (2019) On the implementation of finite deformation gradient-enhanced damage models. Comput Mech 64:847–877

    Article  MathSciNet  MATH  Google Scholar 

  38. Peirlinck M, De Beule M, Segers P, Rebelo N (2018) A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. J Mech Behav Biomed Mater 85:124–133

    Article  Google Scholar 

  39. Peirlinck M, Costabal FS, Sack KL, Choy JS, Kassab GS, Guccione JM, De Beule M, Segers P, Kuhl E (2019) Using machine learning to characterize heart failure across the scales. Biomech Model Mechanobiol 18:1987–2001

    Article  Google Scholar 

  40. Peirlinck M, Costabal FS, Yao J, Guccione JM, Tripathy S, Wang Y, Ozturk D, Segars P, Morrison TM, Levine S, Kuhl E (2021) Precision medicine in human heart modeling. Biomech Model Mechanobiol 20:803–831

    Article  Google Scholar 

  41. Peirlinck M, Yao J, Sahli Costabal F, Kuhl E (2022) How drugs modulate the performance of the human heart. Comput Mech. https://doi.org/10.1007/s00466-022-02146-1

    Article  MathSciNet  MATH  Google Scholar 

  42. Rubiano A, Qi Y, Guzzo D, Rathinasabapathy A, Rowe K, Pepine C, Simmons C (2016) Stem cell therapy restores viscoelastic properties of myocardium in rat model of hypertension. J Mech Behav Biomed Mater 59:71–77

    Article  Google Scholar 

  43. Sahli Costabal F, Hurtado DE, Kuhl E (2016) Generating Purkinje networks in the human heart. J Biomech 49(12):2455–2465

    Article  Google Scholar 

  44. Sahli Costabal F, Concha FA, Hurtado DE, Kuhl E (2017) The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput Methods Appl Mech Eng 320:352–368

    Article  MathSciNet  MATH  Google Scholar 

  45. Sommer G, Schriefl AJ, Andrä M, Sacherer M, Viertler C, Wolinski H, Holzapfel GA (2015) Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomaterialia 24:172–192

    Article  Google Scholar 

  46. Sommer G, Haspinger DC, Andrä M, Sacherer M, Viertler C, Regitnig P, Holzapfel GA (2015) Quantification of shear deformations and corresponding stresses in the biaxially tested human myocardium. Ann Biomed Eng 43:2334–2348

    Article  Google Scholar 

  47. St Pierre SR, Peirlinck M, Kuhl E (2022) Sex matters: a comprehensive comparison of female and male hearts. Front Physiol 13:831179

    Article  Google Scholar 

  48. Stroud JD, Baicu CF, Barnes MA, Spinale FG, Zile MR (2002) Viscoelastic properties of pressure overload hypertrophied myocardium: effect of serine protease treatment. Am J Physiol Heart Circ Physiol 282:H2324–H2335

    Article  Google Scholar 

  49. Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2017) SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45(3):525–541

  50. Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM (2005) MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 289:H692–H700

    Article  Google Scholar 

  51. Yang M, Taber LA (1991) The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J Biomech 24:587–597

    Article  Google Scholar 

  52. Yao J, Varner VD, Brilli LL, Young JM, Taber LA, Perucchio R (2012) Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart. J Biomech Eng 134:024502

    Article  Google Scholar 

  53. Zygote Media Group Inc. (2014) Zygote solid 3D heart generations I & II development report. Technical development of 3D anatomical systems

Download references

Acknowledgements

We acknowledge support through the NSF Grant SI2-SSI 1663671 ‘The SimCardio open source multi-physics cardiac modeling package’ and the NIH Grant R01 HL131823 ‘A new framework for understanding the mechanisms of diastolic dysfunction’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikenoğulları, O.Z., Costabal, F.S., Yao, J. et al. How viscous is the beating heart? Insights from a computational study. Comput Mech 70, 565–579 (2022). https://doi.org/10.1007/s00466-022-02180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02180-z

Keywords

Navigation